Research Papers: Gas Turbines: Aircraft Engine

J. Eng. Gas Turbines Power. 2017;140(2):021201-021201-14. doi:10.1115/1.4037751.

It is anticipated that the contribution of rotorcraft activities to the environmental impact of civil aviation will increase in the future. Due to their versatility and robustness, helicopters are often operated in harsh environments with extreme ambient conditions. These severe conditions not only affect the performance of the engine but also affect the aerodynamics of the rotorcraft. This impact is reflected in the fuel burn and pollutants emitted by the rotorcraft during a mission. The aim of this paper is to introduce an exhaustive methodology to quantify the influence adverse environment conditions have in the mission fuel consumption and the associated emissions of nitrogen oxides (NOx). An emergency medical service (EMS) and a search and rescue (SAR) mission are used as case studies to simulate the effects of extreme temperatures, high altitude, and compressor degradation on a representative twin-engine medium (TEM) weight helicopter, the Sikorsky UH-60A Black Hawk. A simulation tool for helicopter mission performance analysis developed and validated at Cranfield University was employed. This software comprises different modules that enable the analysis of helicopter flight dynamics, powerplant performance, and exhaust emissions over a user-defined flight path profile. For the validation of the models implemented, extensive comparisons with experimental data are presented throughout for rotorcraft and engine performance as well as NOx emissions. Reductions as high as 12% and 40% in mission fuel and NOx emissions, respectively, were observed for the “high and cold” scenario simulated at the SAR role relative to the same mission trajectory under standard conditions.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2017;140(2):021202-021202-9. doi:10.1115/1.4037864.

The accurate prediction of drag caused by bluff bodies present in aerospace applications, particularly at high angles of attack, was a challenge. An experimental and numerical investigation of a nacelle intended for fuselage-mounted aircraft engines was completed at several angles of attack between 0 deg and 45 deg with a Reynolds number of 6 × 105. Steady-flow simulations were conducted on hybrid grids using ANSYS fluent 15.0 with preference given to the realizable k–ε turbulence model. Both total drag and the pressure-to-viscous drag ratio increased with angle of attack as a consequence of greater flow separation on the suction surface. Near-field and far-field drag predictions had grid uncertainties below 2.5% and were within 10% of experiment, which were less than the uncertainties of the respective force balance and outlet traverse data at all angles of attack. Regions were defined on suction-side x-pressure force plots using the validated computational fluid dynamics (CFD) data-set that showed where and how much drag could be reduced. At 20 deg angle of attack, there was a potential to reduce up to 20% drag contained within the separated flow region.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Coal, Biomass, and Alternative Fuels

J. Eng. Gas Turbines Power. 2017;140(2):021401-021401-9. doi:10.1115/1.4037753.

The present effort focuses on detailed numerical modeling of the evaporation of an ethanol–water droplet. The model intends to capture all relevant details of the process: it includes species and heat transport in the liquid and gas phases, and detailed thermophysical and transport properties, varying with both temperature and composition. Special attention is reserved to the composition range near and below the ethanol/water azeotrope point at ambient pressure. For this case, a significant fraction of the droplet lifetime exhibits evaporation dynamics similar to those of a pure droplet. The results are analyzed, and model simplifications are examined. In particular, the assumptions of constant liquid properties, homogeneous liquid phase composition and no differential volatility may not be valid depending on the initial droplet temperature.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

J. Eng. Gas Turbines Power. 2017;140(2):021501-021501-10. doi:10.1115/1.4037749.

Jet-stabilized combustion is a promising technology for fuel flexible, reliable, highly efficient combustion systems. The aim of this work is a reduction of NOx emissions of a previously published two-stage micro gas turbine (MGT) combustor (Zanger et al., 2015, “Experimental Investigation of the Combustion Characteristics of a Double-Staged FLOX-Based Combustor on an Atmospheric and a Micro Gas Turbine Test Rig,” ASME Paper No. GT2015-42313 and Schwärzle et al., 2016, “Detailed Examination of Two-Stage Micro Gas Turbine Combustor,” ASME Paper No. GT2016-57730), where the pilot stage (PS) of the combustor was identified as the main contributor to NOx emissions. The geometry optimization was carried out regarding the shape of the pilot dome and the interface between PS and main stage (MS) in order to prevent the formation of high-temperature recirculation zones. Both stages have been run separately to allow a detailed understanding of the flame stabilization within the combustor, its range of stable combustion, the interaction between both stages, and the influence of the modified geometry. All experiments were conducted at atmospheric pressure and an air preheat temperature of 650 °C. The flame was analyzed in terms of shape, length, and lift-off height, using OH* chemiluminescence (OH-CL) images. Emission measurements for NOx, CO, and unburned hydrocarbons (UHC) emissions were carried out. At a global air number of λ = 2, a fuel split variation was carried out from 0 (only PS) to 1 (only MS). The modification of the geometry leads to a decrease in NOx and CO emissions throughout the fuel split variation in comparison with the previous design. Regarding CO emissions, the PS operations are beneficial for a fuel split above 0.8. The local maximum in NOx emissions observed for the previous combustor design at a fuel split of 0.78 was not apparent for the modified design. NOx emissions were increasing, when the local air number of the PS was below the global air number. In order to evaluate the influence of the modified design on the flow field and identify the origin of the emission reduction compared to the previous design, unsteady Reynolds-averaged Navier–Stokes simulations were carried out for both geometries at fuel splits of 0.93 and 0.78, respectively, using the DLR (German Aerospace Center) in-house code turbulent heat release extension of the tau code (theta) with the k–ω shear stress transport turbulence model and the DRM22 (Kazakov and Frenklach, 1995, “DRM22,” University of California at Berkeley, Berkeley, CA, accessed Sept. 21, 2017, http://www.me.berkeley.edu/drm/) detailed reaction mechanism. The numerical results showed a strong influence of the recirculation zones on the PS reaction zone.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2017;140(2):021502-021502-11. doi:10.1115/1.4037752.

Aeronautical gas turbine ignition is still not well understood and its management and control are mandatory for new lean-burner designs. The fundamental aspects of swirled confined two-phase flow ignition are addressed in the present work. Two facilities enable the analysis of two characteristic phases of the process. The knowledge for ignition, acoustics and instabilities (KIAI)-Spray single-injector burner was investigated in terms of local flow properties, including the air velocity and droplet fuel (n-heptane) size-velocity characterization by phase Doppler anemometry (PDA), and the study of local equivalence ratio by means of planar laser-induced fluorescence (PLIF) on a tracer (toluene). The initial spark location inside the chamber is vital to ensure successful ignition. An ignition probability map was elaborated varying the location of a 532 nm laser-induced spark in the chamber under ultralean nominal conditions (ϕ = 0.61). The outer recirculation zone (ORZ) was found to be the best region for placing a spark and successfully igniting the mixture. A strong correlation was found between the ignition probability field and the airflow turbulent kinetic energy and velocity fields. Local equivalence ratio enhances the importance of the ORZ. Once a successful ignition is accomplished on one injector, the injector-to-injector flame propagation must be examined. High-speed visualization through two synchronized perpendicular cameras was applied on the KIAI-Spray linear multi-injector burner. Four different injector-to-injector distances and four fuels of different volatilities (n-heptane, n-decane, n-dodecane, and jet-A1 kerosene) were evaluated. Spray branches and interinjector regions changed with the interinjector distance. Two different flame propagation mechanisms were identified: the direct radial propagation and the arc propagation mode. Ignition delay times were modified with the injector-to-injector distance and with the different fuels.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2017;140(2):021503-021503-7. doi:10.1115/1.4037869.

The influence of injector coking deposits on the spray field of single-hole mechanical port fuel injectors and multihole common rail direct injection (CRDi) injectors was studied using light scattering technique coupled with image processing and analysis. Instead of employing the traditional accelerated coking process to study injector spray field deterioration, in-service injectors were selected and cleaned using a commercial fuel system cleaning procedure. Variation in atomization characteristics of coked and cleaned injectors were observed based on the spatial distribution of fine, medium, and coarse droplets in the near-field region of the injector spray zone and analyzed as a function of the intensity of scattered light. The improvement in the atomization perceived by this method was compared with traditional techniques like spray cone angle measurement, speed characterization of spray jets, and weight reduction of injector nozzles and needles. It was observed that after the fuel system cleaning procedure, a reduction in the number of coarse droplets in the near-field region and an increase in the number of medium and finely sized droplets was observed, suggesting better atomization of fuel in the near field spray zone.

Topics: Ejectors , Sprays , Drops
Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2017;140(2):021504-021504-10. doi:10.1115/1.4037827.

The light-round is defined as the process by which the flame initiated by an ignition spark propagates from burner to burner in an annular combustor, eventually leading to a stable combustion. Combining experiments and numerical simulation, it was recently demonstrated that under perfectly premixed conditions, this process could be suitably described by large eddy simulation (LES) using massively parallel computations. The present investigation aims at developing light-round simulations in a configuration that is closer to that found in aero-engines by considering liquid n-heptane injection. The LES of the ignition sequence of a laboratory scale annular combustion chamber comprising sixteen swirled spray injectors is carried out with a monodisperse Eulerian approach for the description of the liquid phase. The objective is to assess this modeling approach of the two-phase reactive flow during the ignition process. The simulation results are compared in terms of flame structure and light-round duration to the corresponding experimental images of the flame front recorded by a high-speed intensified charge-coupled device camera and to the corresponding experimental delays. The dynamics of the flow is also analyzed to identify and characterize mechanisms controlling flame propagation during the light-round process.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Cycle Innovations

J. Eng. Gas Turbines Power. 2017;140(2):021701-021701-12. doi:10.1115/1.4037754.

This paper shows experimental results obtained from a T100 microturbine connected with different volume sizes. The activity was carried out with the test rig developed at the University of Genoa for hybrid system emulation. However, these results apply to all the advanced cycles where a microturbine is connected with an additional external component responsible for volume size increase. Even if the tests were performed with a microturbine, similar analyses can be extended to large size turbines. A modular vessel was used to perform and to compare the tests with different volume sizes. To highlight the volume size effect, preliminary experimental results were carried out considering the transient response due to an on/off bleed valve operation. So, the main differences between system parameters obtained for a bleed line closing operation are compared considering three different volume sizes. The main results reported in this paper are related to surge operations. To produce surge conditions in this test rig, a valve operating in the main air path was closed to generate unstable behavior for the three different volume sizes. Particular focus was devoted to the operational curve plotted on the compressor map. The vibration frequency analysis showed significant amplitude increase not only during surge events but also close to the unstable condition. In details, possible surge precursor indicators were obtained to be used for the detection of risky machine operations. The experimental data collected during these tests are analyzed with the objective of designing control systems to prevent surge conditions.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Microturbines and Small Turbomachinery

J. Eng. Gas Turbines Power. 2017;140(2):022301-022301-9. doi:10.1115/1.4037586.

The measured performance maps of turbochargers (TCs), which are commonly used for the matching process with a combustion engine, are influenced by heat transfer and friction phenomena. Internal heat transfer from the hot turbine side to the colder compressor side leads to an apparently lower compressor efficiency at low to midspeeds and is not comparable to the compressor efficiency measured under adiabatic conditions. The product of the isentropic turbine efficiency and the mechanical efficiency is typically applied to characterize the turbine efficiency and results from the power balance of the turbocharger. This so-called thermomechanical turbine efficiency is strongly correlated with the compressor efficiency obtained from measured data. Based on a previously developed one-dimensional (1D) heat transfer model, nondimensional analysis was carried out and a generally valid heat transfer model for the compressor side of different TCs was developed. From measurements and ramp-up simulations of turbocharger friction power, an analytical friction power model was developed to correct the thermomechanical turbine efficiency from friction impact. The developed heat transfer and friction model demonstrates the capability to properly predict the adiabatic (aerodynamic) compressor and turbine performance from measurement data obtained at a steady-flow hot gas test bench.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Oil and Gas Applications

J. Eng. Gas Turbines Power. 2017;140(2):022401-022401-7. doi:10.1115/1.4037723.

This paper discusses the interaction between a centrifugal compressor and the process, and as a result, the control requirements for centrifugal compressor packages. The focus is on variable speed, upstream, and midstream applications. The impact of the interaction between system characteristics and compressor characteristics both under steady-state and transient conditions is explained. Also considered are the concepts to optimize and control the units. Special attention is given to the issue of surge avoidance. Additionally, the impact of the process and how the process dynamics interact with the compressor is analyzed, categorized, and explained.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Structures and Dynamics

J. Eng. Gas Turbines Power. 2017;140(2):022501-022501-15. doi:10.1115/1.4037666.

The catcher bearing (CB) is a crucial part of the magnetic bearing system. It can support the rotor when the magnetic bearing is shut down or malfunctioning and limit the rotor's position when large vibration occurs. The sleeve bearing has the advantages of a relatively large contact surface area, simple structure, and an easily replaced surface. There are already many applications of the sleeve type CBs in the industrial machinery supported by the magnetic bearings. Few papers though provide thorough investigations into the dynamic and thermal responses of the sleeve bearing in the role of a CB. This paper develops a coupled two-dimensional (2D) elastic deformation—heat transfer finite element model of the sleeve bearing acting as a CB. A coulomb friction model is used to model the friction force between the rotor and the sleeve bearing. The contact force and 2D temperature distribution of the sleeve bearing are obtained by numerical integration. To validate the finite element method (FEM) code developed by the author, first, the mechanical and thermal static analysis results of the sleeve bearing model are compared with the results calculated by the commercial software solidworks simulation. Second, the transient analysis numerical results are compared with the rotor drop test results in reference. Additionally, this paper explores the influences of different surface lubrication conditions, different materials on rotor-sleeve bearing's dynamic and thermal behavior. This paper lays the foundation of the fatigue life calculation of the sleeve bearing and provides the guideline for the sleeve type CB design.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2017;140(2):022502-022502-10. doi:10.1115/1.4037722.

It is often desirable to identify the critical components that are active in a particular mode shape or an operational deflected shape (ODS) in a complex rotordynamic system with multiple rotating groups and bearings. The energy distributions can help identify the critical components of a rotor bearing system that may be modified to match the design requirements. Although the energy expressions have been studied by researchers in the past under specific limited conditions, these expressions require computing the displacements and velocities of all degrees-of-freedom (DOFs) over one full cycle. They do not address the overall time dependency of the energies and energy distributions, and their effect on the interpretation of a mode shape or an ODS. Moreover, a detailed finite element formulation of these energy expressions including the effects of anisotropy, skew-symmetric stiffness, viscous and structural damping have not been identified by the authors in the open literature. In this article, a detailed account of orbit characteristics and planarity for isotropic and anisotropic systems is presented. The effect of orbit characteristics on the energy expressions is then discussed. An elegant approach to obtaining time-dependent kinetic and strain energies of a mode shape or an ODS directly from the structural matrices and complex eigenvectors/displacement vectors is presented. The expressions for energy contributed per cycle by various types of damping and the destabilizing skew-symmetric stiffness that can be obtained in a similar way are also shown. The conditions under which the energies and energy distributions are time-invariant are discussed. An alternative set of energy expressions for isotropic systems with the DOFs reduced by half is also presented.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2017;140(2):022503-022503-12. doi:10.1115/1.4037863.

A new method is developed for the forced response analysis of mistuned bladed disks manufactured from anisotropic materials and mistuned by different orientations of material anisotropy axes. The method uses (i) sector finite element (FE) models of anisotropic bladed disks and (ii) FE models of single blades and allows the calculation of displacements and stresses in a mistuned assembly. A high-fidelity reduction approach is proposed which ensures high-accuracy modeling by introducing an enhanced reduction basis. The reduction basis includes the modal properties of specially selected blades and bladed disks. The technique for the choice of the reduction basis has been developed, which provides the required accuracy while keeping the computation expense acceptable. An approach for effective modeling of anisotropy-mistuned bladed disk without a need to create a FE model for each mistuning pattern is developed. The approach is aimed at fast statistical analysis based on Monte Carlo simulations. All components of the methodology for anisotropy-mistuned bladed disks are demonstrated on the analysis of models of practical bladed disks. Effects of anisotropy mistuning on forced response levels are explored.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2017;140(2):022504-022504-8. doi:10.1115/1.4037873.

Counter-rotation angled injection employed for aerostatic hybrid bearings reduces the cross coupling stiffness that may lead to whirl–whip instabilities at high rotation speeds. The benefits of counter-rotation injection have been known for years. Theoretical investigations were performed for water or air fed hybrid bearings but experiments were conducted only for water fed bearings. The present work is the first effort dedicated to angled injection in air fed hybrid bearings. The tests were performed for a simple rotor supported by two identical hybrid bearings. The hybrid bearings are provided with small size, shallow pockets and are fed with air via counter-rotation-oriented orifice type restrictors. An impulse turbine fed with air entrains the rotor. An impact gun applies dynamic excitations and the rotordynamic coefficients are identified from the equations of motion of the rotor. Different air feeding pressures are tested as well as high rotational speeds. Compared to the dynamic characteristics of radial injection hybrid bearings, the direct stiffness of counter-rotation injection bearings has slightly lower values and the direct damping is higher but the main impact is the drastic reduction of the cross-coupling stiffness that may have even negative values.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Turbomachinery

J. Eng. Gas Turbines Power. 2017;140(2):022601-022601-10. doi:10.1115/1.4037599.

Commercial/military fixed-wing aircraft and rotorcraft engines often have to operate in significantly degraded environments consisting of sand, dust, ash, and other particulates. Marine gas turbine engines are subjected to salt spray, while the coal-burning industrial power generation turbines are subjected to fly ash. The presence of solid particles in the working fluid medium has an adverse effect on the durability of these engines as well as performance. Typical turbine blade damages include blade coating wear, sand glazing, calcia–magnesia–alumina–silicate (CMAS) attack, oxidation, and plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. This research represents the complex thermochemomechanical fluid structure interaction problem of semimolten particulate impingement and infiltration onto ceramic thermal barrier coatings (TBCs) into its canonical forms. The objective of this research work is to understand the underpinning interface science of interspersed graded ceramic/metal and ceramic/ceramic composites at the grain structure level for robust coatings and bulk material components for vehicle propulsion systems. This research enhances our understanding of the fundamental relationship between interface properties and the thermomechanical behavior in dissimilar materials for materials by design systems, and creates the ability to develop and fabricate materials with targeted macroscale properties as a function of their interfacial behavior. This project creates a framework to enable the engineered design of solid–solid and liquid–solid interfaces in dissimilar functionalized materials to establish a paradigm shift toward science from the traditional empiricism in engineering TBCs and high temperature highly loaded bulk materials. An integrated approach of modeling and simulation, characterization, fabrication, and validation to solve the fundamental questions of interface mechanisms which affect the properties of novel materials will be validated to guide component material solutions to visionary 2040+ military vehicle propulsion systems.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2017;140(2):022602-022602-11. doi:10.1115/1.4037750.

Due to the rapid progress in high-performance computing and the availability of increasingly large computational resources, Navier–Stokes (NS) computational fluid dynamics (CFD) now offers a cost-effective, versatile, and accurate means to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines and deliver more efficient designs. In particular, the possibility of determining a fully resolved flow field past the blades by means of CFD offers the opportunity to both further understand the physics underlying the turbine fluid dynamics and to use this knowledge to validate lower-order models, which can have a wider diffusion in the wind energy sector, particularly for industrial use, in the light of their lower computational burden. In this context, highly spatially and temporally refined time-dependent three-dimensional (3D) NS simulations were carried out using more than 16,000 processor cores per simulation on an IBM BG/Q cluster in order to investigate thoroughly the 3D unsteady aerodynamics of a single blade in Darrieus-like motion. Particular attention was paid to tip losses, dynamic stall, and blade/wake interaction. CFD results are compared with those obtained with an open-source code based on the lifting line free vortex wake model (LLFVW). At present, this approach is the most refined method among the “lower-fidelity” models, and as the wake is explicitly resolved in contrast to blade element momentum (BEM)-based methods, LLFVW analyses provide 3D flow solutions. Extended comparisons between the two approaches are presented and a critical analysis is carried out to identify the benefits and drawbacks of the two approaches.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2017;140(2):022603-022603-11. doi:10.1115/1.4037825.

The presence and accretion of airborne particulates, including ash, sand, dust, and other compounds, in gas turbine engines can adversely affect performance and life of components. Engine experience and experimental work have shown that the thickness of accreted layers of these particulates can become large relative to the engine components on which they form. Numerical simulation to date has largely ignored the effects of resultant changes in the passage geometry due to the build-up of deposited particles. This paper will focus on updating the boundaries of the flow volume geometry by integrating the deposited volume of particulates on the solid surface. The technique is implemented using a novel, coupled deposition-dynamic mesh morphing (DMM) approach to the simulation of particulate-laden flows using Reynolds-averaged Navier–Stokes modeling of the bulk fluid, and Lagrangian-based particulate tracking. On an iterative basis, the particle deposition distributions are used to modify the surface topology by altering the locations of surface nodes, which modifies the mesh. The continuous phase solution and particle tracking are then recalculated. The sensitivity to the modeling time steps employed is explored. An impingement geometry case is used to assess the validity of the technique, and a passage with film cooling holes is interrogated. Differences are seen for all sticking and solid phase motion models employed. At small solid particle sizes, considerable disparity is observed between the particle motion modeling approaches, while the position and level of accretion is altered through the use of a nonisotropic stick and bounce model.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2017;140(2):022604-022604-10. doi:10.1115/1.4037755.

In order to achieve the highest power plant efficiency, original equipment manufacturers continuously increase turbine working parameters (steam temperatures and pressures), improve components design, and modify start-up cycles to reduce time while providing more frequent start-up events. All these actions result in much higher levels of thermostresses, a lifetime consumption of primary components and an increased demand for accurate thermostructural and low cycle fatigue (LCF) simulations. In this study, some aspects of methodological improvement are analyzed and proposed in the frame of an integrated approach for steam turbine components thermostructural analysis, reliability, and lifetime prediction. The full scope of the engineering tasks includes aero/thermodynamic flow path and secondary flows analysis to determine thermal boundary conditions (BCs), detailed thermal/structural two-dimensional and three-dimensional (3D) finite element (FE) models preparation, components thermal and stress–strain simulation, rotor–casing differential expansion and clearances analysis, and finally, turbine unit lifetime estimation. Special attention is paid to some of the key factors influencing the accuracy of thermal stresses prediction, specifically, the effect of “steam condensation” on thermal BC, the level of detailing for thermal zones definition, thermal contacts, and mesh quality in mechanical models. These aspects have been studied and validated against test data, obtained via a 30 MW steam turbine for combined cycle application based on actual start-up data measured from the power plant. The casing temperatures and rotor–stator differential expansion, measured during the commissioning phase of the turbine, were used for methodology validation. Finally, the evaluation of the steam turbine HPIP rotor lifetime by means of a LCF approach is performed.

Commentary by Dr. Valentin Fuster

Research Papers: Internal Combustion Engines

J. Eng. Gas Turbines Power. 2017;140(2):022801-022801-10. doi:10.1115/1.4037862.

The static leakage of a common rail (CR) injector is the flow-rate that is recirculated from the injector when the pilot-stage is not actuated. It is a critical issue in the development of modern CR injectors, because it can limit the maximum rail pressure level. An experimental methodology for splitting the static leakage between the contributions that pertain to the different leakage paths has been developed and applied to an innovative solenoid injector for the Brazilian, Russian, Indian, and Chinese (BRIC) market. The weak point of this injector was the excessively high static leakage compared to solenoid injectors for the European and U.S. markets. The static leakage splitting procedure allowed the sources of this leakage to be determined and a newly designed prototype was manufactured on the basis of the outcomes of this analysis. The new prototype featured a significant reduction (up to 54%) in the static leakage, compared to the original injector, and its leakage performance was almost the same as the typical one of Euro 5 solenoid injectors. Finally, a finite element method (FEM) analysis has been carried out on the improved BRIC injector. Guidelines are provided for a more refined design of some critical pieces of the component internal layout in order to further reduce its static leakage.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2017;140(2):022802-022802-8. doi:10.1115/1.4037868.

The need for reductions of nitrogen oxides (NOx), sulfur oxides (SOx), and carbon dioxide (CO2) emissions has been acknowledged on the global level. However, it is difficult to meet the strengthened emissions regulations by using the conventional marine diesel engines. Therefore, lean burn gas engines have been recently attracting attention in the maritime industry. Because they use natural gas as fuel and can simultaneously reduce both NOx and CO2 emissions. On the other hand, since methane is the main component of natural gas, the slipped methane, which is the unburned methane emitted from the lean burn gas engines, might have a potential impact on global warming. The authors have proposed a combined exhaust gas recirculation (C-EGR) system to reduce the slipped methane from the gas engines and NOx from marine diesel engines by providing the exhaust gas from lean burn gas engine to the intake manifold of the marine diesel engine using a blower. Since the exhaust gas from the gas engine includes slipped methane, this system could reduce both the NOx from the marine diesel engine and the slipped methane from the lean burn gas engine simultaneously. This paper introduces the details of the proposed C-EGR system and presents the experimental results of emissions characteristics on the C-EGR system. As a result, it was confirmed that the C-EGR system attained more than 75% reduction of the slipped methane in the intake gas. Additionally, the NOx emission from the diesel engine decreased with the effect of the exhaust gas recirculation (EGR) system.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In