Research Papers: Gas Turbines: Coal, Biomass, and Alternative Fuels

Challenges and Solutions for Utilization of Bioliquids in Microturbines

[+] Author and Article Information
Tine Seljak

Faculty of Mechanical Engineering,
University of Ljubljana,
Aškerčeva cesta 6,
Ljubljana SI-1000, Slovenia
e-mail: tine.seljak@fs.uni-lj.si

Klemen Pavalec

Faculty of Mechanical Engineering,
University of Ljubljana,
Aškerčeva cesta 6,
Ljubljana SI-1000, Slovenia
e-mail: klemen.pavalec@gmail.com

Marco Buffi

Industrial Engineering Department,
University of Florence,
Via di S. Marta, 3,
Firenze 50139, Italy
e-mail: marco.buffi@re-cord.org

Agustin Valera-Medina

Cardiff University,
Queen's Building,
The Parade,
Cardiff CF24 3AA, UK
e-mail: valeramedinaa1@cardiff.ac.uk

David Chiaramonti

University of Florence,
Industrial Engineering Department,
Via di S. Marta, 3,
Firenze 50139, Italy
e-mail: david.chiaramonti@unifi.it

Tomaž Katrašnik

Faculty of Mechanical Engineering,
University of Ljubljana,
Aškerčeva cesta 6,
Ljubljana SI-1000, Slovenia
e-mail: tomaz.katrasnik@fs.uni-lj.si

1Corresponding author.

Contributed by the Coal, Biomass and Alternate Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 30, 2018; final manuscript received August 15, 2018; published online October 5, 2018. Editor: Jerzy T. Sawicki.

J. Eng. Gas Turbines Power 141(3), 031401 (Oct 05, 2018) (9 pages) Paper No: GTP-18-1528; doi: 10.1115/1.4041312 History: Received July 30, 2018; Revised August 15, 2018

Increased public concerns and stricter regulatory frameworks promote the role of bioliquids (liquid fuel for energy purposes other than for transport, including electricity and heating and cooling, produced from biomass). This is a driving force for development and employment of micro-gas turbines (MGTs) due to their ability to combust bioliquids with less favorable properties in a decentralized manner. Gas turbines are characterized by relatively high combustion efficiency at relatively low concentrations of harmful emissions, relatively high effective efficiency and durability when utilizing a common portfolio of gas turbine approved fuels. It is thus desired to preserve these advantages of gas turbines also while burning bioliquids and further relying on their scalability that is crucial to efficient support of decentralized energy production at small scales. To support these objectives, MGT technology needs to allow for utilization of bioliquids with much wider spectrum of physical and chemical properties compared to common commercially available MGTs in a single MGT-based plant. In this view, the present study is providing the first thorough overview of challenges and solutions encountered by researchers across the wide area of bioliquids in MGTs.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Soares, C. , 2007, “ Design and Components of Microturbines,” Microturbines, Elsevier, Amsterdam, The Netherlands, pp. 9–19.
U.S. DOE, 2016, “Combined Heat and Power Technology Fact Sheet Series: Microturbines,” U.S. Department of Energy, Washington, DC, No. DOE/EE-1329.
Goli, K. C. , Kondi, S. V. , and Timmanpalli, V. B. , 2015, “ Recent Trends in Mechanical Engineering Principles and Working of Microturbine,” Recent Trends in Mechanical Engineering, pp. 1–7.
Nascimento, M. A. R. , De, L. , dos Santos, E. C. , Batista Gomes, E. E. , Goulart, F. L. , Gutirrez Velsques, E. I. , and Alexis Miranda, R. , 2013, “ Micro Gas Turbine Engine: A Review,” Progress in Gas Turbine Performance, D. E. Benini , ed., InTech, London, p. 36.
Lymberopoulos, N. , 2004, “ Microturbines and Their Application in Bio-Energy,” Project Technical Assistant Framework Contract (EESD Contract No: NNE5-PTA-2002-003/1, Centre for Renewable Energy Sources C.R.E.S, Pikermi Attiki, Greece.
Colantoni, S. , Della Gatta, S. , De Prosperis, R. , Russo, A. , Fantozzi, F. , and Desideri, U. , 2010, “ Gas Turbines Fired With Biomass Pyrolysis Syngas: Analysis of the Overheating of Hot Gas Path Components,” ASME J. Eng. Gas Turbines Power, 132(6), p. 061401. [CrossRef]
Pilavachi, P. , 2002, “ Mini-and Micro-Gas Turbines for Combined Heat and Power,” Appl. Therm. Eng., 22(18), pp. 2003–2014. [CrossRef]
The European Parliament and The Council of The European Union, 2009, “ Directive 2009/28/EC,” European Council, Brussels, Belgium.
The European Parliament and the Council of The European Union, 2009, “ Directive 2009/30/EC,” European Council, Brussels, Belgium.
Tacconi, D. , Prussi, M. , Buffi, M. , and Chiaramonti, D. , 2015, “ Information Related to Economic, Social and Environmental Parameters,” EU FP7 ITAKA Project, Madrid, Spain, Technical Report No. 199638. https://cordis.europa.eu/result/rcn/199638_en.html
Gerasimchuk, I. , 2013, “ Biofuel Policies and Feedstock in the EU,” Chatham House, London.
The European Commission, 2001, “ Commission Decision 2011/13/EU,” European Council, Brussels, Belgium.
The European Parliament and The Council of The European Union, 2010, “ Commission Decision 2010/335/EU,” Brussels, Belgium.
The European Parliament and The Council of The European Union, 2014, “ Commission Regulation 1307/2014,” Brussels, Belgium.
Flach, B. , Lieberz, S. , Rondon, M. , Williams, B. , and Teiken, C. , 2015, “ EU Biofuels Annual 2015 NL5028,” Global Agricultural Information Network, Washington, DC.
NL Agency, 2011, “ Sustainability Requirements for Biofuels and Biomass for Energy in EU and US Regulatory Frameworks,” NL Agency, Utrecht, The Netherlands.
Su, Y. , Zhang, P. , and Su, Y. , 2015, “ An Overview of Biofuels Policies and Industrialization in the Major Biofuel Producing Countries,” Renewable Sustainable Energy Rev., 50, pp. 991–1003. [CrossRef]
Iijima, M. , and Paulson, J. , 2017, “ Japan Biofuels Annual 2017,” USDA Foreign Agricultural Service, Tokyo, Japan.
Lefebvre, A. H. , and Ballal, D. R. , 2010, “ Gas Turbine Combustion: Alternative Fuels and Emissions,” Gas Turbine Combustion, CRC Press, Boca Raton, FL, pp. 443–511.
Boyce, M. P. , 2012, Gas Turbine Engineering Handbook, Elsevier, Amsterdam, The Netherlands.
Jansohn, P. , 2013, “ Overview of Gas Turbine Types and Applications,” Modern Gas Turbine Systems, Elsevier, Sawston, UK, pp. 21–43.
Blakey, S. , Rye, L. , and Wilson, C. W. , 2011, “ Aviation Gas Turbine Alternative Fuels: A Review,” Proc. Combust. Inst., 33(2), pp. 2863–2885. [CrossRef]
Chiaramonti, D. , Prussi, M. , Buffi, M. , and Tacconi, D. , 2014, “ Sustainable Bio Kerosene: Process Routes and Industrial Demonstration Activities in Aviation Biofuels,” Appl. Energy, 136, pp. 767–774. [CrossRef]
Gupta, K. K. , Rehman, A. , and Sarviya, R. M. , 2010, “ Bio-Fuels for the Gas Turbine: A Review,” Renewable Sustainable Energy Rev., 14(9), pp. 2946–2955. [CrossRef]
García, I. L. , 2016, “ Feedstocks and Challenges to Biofuel Development,” Handbook of Biofuels Production, Elsevier, Duxford, UK, pp. 85–118.
Cardona Alzate, C. A. , and Sánchez Toro, O. J. , 2006, “ Energy Consumption Analysis of Integrated Flowsheets for Production of Fuel Ethanol From Lignocellulosic Biomass,” Energy, 31(13), pp. 2111–2123.
Randelli, F. , 2009, “ An Integrated Analysis of Production Costs and Net Energy Balance of Biofuels,” Reg. Environ. Change, 9(3), pp. 221–229. [CrossRef]
Jahangirian, S. , and Engeda, A. , 2008, “ Biogas Combustion and Chemical Kinetics for Gas Turbine Applications,” Combustion Science and Engineering, Vol. 3, American Society of Mechanical Engineers, New York, pp. 13–22.
Ullah, I. , Ha, M. , Othman, D. , Hashim, H. , Matsuura, T. , Ismail, A. F. , Rezaei-Dasht Arhandi, M. , and Wan Azelle, I. ,, 2017, “ Biogas as a Renewable Energy Fuel—A Review of Biogas Upgrading, Utilisation and Storage,” Energy Convers. Manage., 150, pp. 277–294. [CrossRef]
Arena, U. , 2012, “ Process and Technological Aspects of Municipal Solid Waste Gasification: A Review,” Waste Manage., 32(4), pp. 625–639. [CrossRef]
Braun, R. , Weiland, P. , and Wellinger, A. , 2008, Biogas From Energy Crop Digestion, IEA Energy, Braunschweig, Germany.
Chen, S. , 2012, “ Green Oil Production by Hydroprocessing,” Int. J. Clean Coal Energy, 1(4), pp. 43–55. [CrossRef]
Klingshirn, C. D. , DeWitt, M. , Striebich, R. , Anneken, D. , Shafer, L. , Corporan, E. , Wagner, M. , and Brigalli, D. , 2012, “ Hydroprocessed Renewable Jet Fuel Evaluation, Performance, and Emissions in a T63 Turbine Engine,” ASME J. Eng. Gas Turbines Power, 134(5), p. 051506. [CrossRef]
Li, H. , Altaher, M. A. , Wilson, C. W. , Blakey, S. , Chung, W. , and Rye, L. , 2013, “ Quantification of Aldehydes Emissions From Alternative and Renewable Aviation Fuels Using a Gas Turbine Engine,” Atmos. Environ., 84, pp. 373–379. [CrossRef]
Lobo, P. , Rye, L. , Williams, P. I. , Christie, S. , Uryga-Bugajska, I. , Wilson, C. W. , Hagen, D. E. , Whitefield, P. D. , Blakey, S. , Coe, H. , Raper, D. , and Pourkashanian, M. , 2012, “ Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine—Part 1: Gaseous and Particulate Matter Emissions,” Environ. Sci. Technol., 46(19), pp. 10805–10811. [CrossRef] [PubMed]
Van de Beld, B. , Holle, E. , and Florijn, J. , 2013, “ The Use of Pyrolysis Oil and Pyrolysis Oil Derived Fuels in Diesel Engines for CHP Applications,” Appl. Energy, 102, pp. 190–197. [CrossRef]
Czernik, S. , and Bridgwater, A. V. , 2004, “ Overview of Applications of Biomass Fast Pyrolysis Oil,” Energy Fuels, 18(2), pp. 590–598. [CrossRef]
Chiaramonti, D. , Oasmaa, A. , and Solantausta, Y. , 2007, “ Power Generation Using Fast Pyrolysis Liquids From Biomass,” Renewable Sustainable Energy Rev., 11(6), pp. 1056–1086. [CrossRef]
Rogers, J. G. , and Brammer, J. G. , 2012, “ Estimation of the Production Cost of Fast Pyrolysis Bio-Oil,” Biomass Bioenergy, 36, pp. 208–217. [CrossRef]
Seljak, T. , Rodman Oprešnik, S. , Kunaver, M. , and Katrašnik, T. , 2012, “ Wood, Liquefied in Polyhydroxy Alcohols as a Fuel for Gas Turbines,” Appl. Energy, 99, pp. 40–49. [CrossRef]
Capstone Turbine Corporation, 2006, “ Technical Reference: Capstone C30 Model Performance,” Capstone Turbine Corporation, Chatsworth, LA, pp. 1–46.
Ensola GmbH, 2006, “Technical Documentation Microturbine Turbec T100,” Ensola GmbH, Zurich, Switzerland.
Prussi, M. , Chiaramonti, D. , Riccio, G. , Martelli, F. , and Pari, L. , 2012, “ Straight Vegetable Oil Use in Micro-Gas Turbines: System Adaptation and Testing,” Appl. Energy, 89(1), pp. 287–295. [CrossRef]
Prussi, M. , Chiaramonti, D. , Recchia, L. , Martelli, F. , Guidotti, F. , and Pari, L. , 2013, “ Alternative Feedstock for the Biodiesel and Energy Production: The OVEST Project,” Energy, 58, pp. 2–8. [CrossRef]
Chiariello, F. , Allouis, C. , Reale, F. , and Massoli, P. , 2014, “ Gaseous and Particulate Emissions of a Micro Gas Turbine Fuelled by Straight Vegetable Oil–Kerosene Blends,” Exp. Therm. Fluid Sci., 56, pp. 16–22. [CrossRef]
Bolszo, C. D. , and McDonell, V. G. , 2009, “ Emissions Optimization of a Biodiesel Fired Gas Turbine,” Proc. Combust. Inst., 32(2), pp. 2949–2956. [CrossRef]
Calabria, R. , Chiariello, F. , Massoli, P. , and Reale, F. , 2015, “ Numerical Study of a Micro Gas Turbine Fed by Liquid Fuels: Potentialities and Critical Issues,” Energy Procedia, 81, pp. 1131–1142. [CrossRef]
Cadorin, M. , Pinelli, M. , Vaccari, A. , Calabria, R. , Chiariello, F. , Massoli, P. , and Bianchi, E. , 2012, “ Analysis of a Micro Gas Turbine Fed by Natural Gas and Synthesis Gas: MGT Test Bench and Combustor CFD Analysis,” ASME J. Eng. Gas Turbines Power, 134(7), p. 071401. [CrossRef]
Reale, F. , Calabria, R. , Chiariello, F. , Pagliara, R. , and Massoli, P. , 2012, “ A Micro Gas Turbine Fuelled by Methane-Hydrogen Blends,” Appl. Mech. Mater., 232, pp. 792–796. [CrossRef]
Abagnale, C. , Cameretti, M. C. , De Robbio, R. , and Tuccillo, R. , 2016, “ CFD Study of a MGT Combustor Supplied With Syngas,” Energy Procedia, 101, pp. 933–940. [CrossRef]
Laranci, P. , Bidini, G. , Desideri, U. , and Fantozzi, F. , 2013, “ CFD Analysis of an Annular Micro Gas Turbine Combustion Chamber Fuelled With Liquid Biofuels: Preliminary Results With Bioethanol,” ASME Paper No. GT2013-95696.
Cappelletti, A. , Martelli, F. , Bianchi, E. , and Trifoni, E. , 2014, “ Numerical Redesign of 100 kw MGT Combustor for 100% H2 Fueling,” Energy Procedia, 45, pp. 1412–1421. [CrossRef]
Bolszo, C. D. , and Mcdonell, V. G. , 2007, “ Biodiesel Airblast Atomization Optimization for Reducing Pollutant Emission in Small Scale Gas Turbine Engines,” ILASS-Americas, 20th Annual Conference on Liquid Atomization and Spray Systems, Chicago, IL, May 15–18, Paper No. 21.
Chiaramonti, D. , Rizzo, A. M. , Spadi, A. , Prussi, M. , Riccio, G. , and Martelli, F. , 2013, “ Exhaust Emissions From Liquid Fuel Micro Gas Turbine Fed With Diesel Oil, Biodiesel and Vegetable Oil,” Appl. Energy, 101, pp. 349–356. [CrossRef]
Cappelletti, A. , Rizzo, A. M. , Chiaramonti, D. , and Martelli, F. , 2013, “ CFD Redesign of Micro Gas Turbine Combustor for Bio-Fuels Fueling,” XXI International Symposium on Air Breathing Engines (ISABE), Busan, Korea, Sept. 9–13, pp. 1199–1206.
Sallevelt, J. L. H. P. , Gudde, J. E. P. , Pozarlik, A. K. , and Brem, G. , 2014, “ The Impact of Spray Quality on the Combustion of a Viscous Biofuel in a Micro Gas Turbine,” Appl. Energy, 132, pp. 575–585. [CrossRef]
Pozarlik, A. , Bijl, A. , Alst, N. V. , Bramer, E. , and Brem, G. , 2015, “ Pyrolysis Oil Utilization in 50 kWe Gas Turbine,” 18th IFRF Members' Conference—Flexible and Clean Fuel Conversion to Industry, Freising, Germany, pp. 1–10.
Cavarzere, A. , Morini, M. , Pinelli, M. , Spina, P. R. , Vaccari, A. , and Venturini, M. , 2014, “ Experimental Analysis of a Micro Gas Turbine Fuelled With Vegetable Oils From Energy Crops,” Energy Procedia, 45, pp. 91–100. [CrossRef]
Al-Shudeifat, M. A. , and Donaldson, A. B. , 2010, “ Combustion of Waste Trap Grease Oil in Gas Turbine Generator,” Fuel, 89(3), pp. 549–553. [CrossRef]
Zabihian, F. , Fung, A. S. , and Chiang, H.-W. D. , 2011, “ Modeling of Biodiesel Fueled Micro Gas Turbine,” ASME Paper No. GT2011-46655.
Kasper, J. M. , Jasas, G. B. , and Trauth, R. L. , 1983, “ Use of Pyrolysis-Derived Fuel in a Gas Turbine Engine,” ASME Paper No. 83-GT-96.
Abu Talib, A. R. , Gires, E. , and Ahmad, M. T. , 2014, “ Performance Test of a Small-Scale Turbojet Engine Running on a Palm Oil Biodiesel—Jet a Blend,” J. Fuels, 2014, pp. 1–9. [CrossRef]
Hoxie, A. , and Anderson, M. , 2017, “ Evaluating High Volume Blends of Vegetable Oil in Micro-Gas Turbine Engines,” Renewable Energy, 101, pp. 886–893. [CrossRef]
López Juste, G. , and Salvá Monfort, J. J. , 2000, “ Preliminary Test on Combustion of Wood Derived Fast Pyrolysis Oils in a Gas Turbine Combustor,” Biomass Bioenergy, 19(2), pp. 119–128. [CrossRef]
Seljak, T. , Rodman Oprešnik, S. , Kunaver, M. , and Katrašnik, T. , 2012, “ Combustion Performance of Different Liquefied Lignocellulosic Materials in a Laboratory Scale Gas Turbine,” International Conference on Applied Energy 2012, Suzhou, China, July 5–8, Paper No. ICAE2012-A10550.
Seljak, T. , Oprešnik, S. R. , Kunaver, M. , and Katrašnik, T. , 2014, “ Effects of Primary Air Temperature on Emissions of a Gas Turbine Fired by Liquefied Spruce Wood,” Biomass Bioenergy, 71(2), pp. 394–407. [CrossRef]
Seljak, T. , Kunaver, M. , and Katrašnik, T. , 2014, “ Emission Evaluation of Different Types of Liquefied Wood,” J. Mech. Eng., 60(4), pp. 221–231. [CrossRef]
Seljak, T. , Rodman Oprešnik, S. , and Katrašnik, T. , 2014, “ Microturbine Combustion and Emission Characterisation of Waste Polymer-Derived Fuels,” Energy, 77, pp. 226–234. [CrossRef]
Seljak, T. , Širok, B. , and Katrašnik, T. , 2016, “ Advanced Fuels for Gas Turbines: Fuel System Corrosion, Hot Path Deposit Formation and Emissions,” Energy Convers. Manage., 125, pp. 40–50. [CrossRef]
Seljak, T. , and Katrašnik, T. , 2016, “ Designing the Microturbine Engine for Waste-Derived Fuels,” Waste Manage., 47(Pt B), pp. 299–310. [CrossRef]
Durdina, L. , Jedelsky, J. , and Jicha, M. , 2012, “ Spray Structure of a Pressure-Swirl Atomizer for Combustion Applications,” EPJ Web Conf., 25, p. 01010. [CrossRef]
Lehto, J. , Oasmaa, A. , Solantausta, Y. , Kytö, M. , and Chiaramonti, D. , 2014, “ Review of Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-Oils From Lignocellulosic Biomass,” Appl. Energy, 116, pp. 178–190. [CrossRef]
Li, Z. , Wu, Y. , Yang, H. , Cai, C. , Zhang, H. , Hashiguchi, K. , Takeno, K. , and Lu, J. , 2013, “ Effect of Liquid Viscosity on Atomization in an Internal-Mixing Twin-Fluid Atomizer,” Fuel, 103, pp. 486–494. [CrossRef]
Beran, M. , and Axelsson, L.-U. , 2014, “ Development and Experimental Investigation of a Tubular Combustor for Pyrolysis Oil Burning,” ASME J. Eng. Gas Turbines Power, 137(3), p. 031508. [CrossRef]


Grahic Jump Location
Fig. 1

Microturbine topology with indicated key characteristics (adopted after Ref. [1])

Grahic Jump Location
Fig. 2

Impact of proposed guidelines on key desired properties of MGT

Grahic Jump Location
Fig. 3

Increasing contaminant content along the acidic fuel lifecycle (arrow direction) in stainless steel equipped preheating system

Grahic Jump Location
Fig. 4

Example of thermally insulated nozzle [65]

Grahic Jump Location
Fig. 5

The impact of exhaust gas heat regeneration on stability of operational parameters in MGT, fired with highly viscous bioliquid (upper-w/o regeneration and lower w/regeneration) [70]



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In