0
RESEARCH PAPERS

Effects of Static Friction on the Forced Response of Frictionally Damped Turbine Blades

[+] Author and Article Information
A. Sinha, J. H. Griffin

Department of Mechanical Engineering, Carnegie-Mellon University, Pittsburgh, Pa. 15213

J. Eng. Gas Turbines Power 106(1), 65-69 (Jan 01, 1984) (5 pages) doi:10.1115/1.3239552 History: Received December 22, 1982; Online October 15, 2009

Abstract

The effect of static friction on the design of flexible blade-to-ground vibration dampers used in gas turbine engines is investigated. It is found that for γ (ratio of dynamic and static friction coefficients) less than 1, the steady-state response is essentially harmonic when the damper slip load, S, is small. However, as S increases beyond a certain value, the steady-state response ceases to be simply harmonic and, while still periodic, is a more complex waveform. The transition slip load is found to be lower for smaller γ. The maximum possible reduction in vibratory stresses increases as γ decreases. These analytical results are compared with those from the conventional numerical time integration method. In addition, an efficient time integration algorithm is described which can be used to predict the peak displacements of the transition solution without tracing the whole waveform, a useful procedure when no harmonic steady-state solution exists. The conditions under which blade response can be adequately modeled by simulating only dynamic friction are established.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In