Analysis for Leakage and Rotordynamic Coefficients of Surface-Roughened Tapered Annular Gas Seals

[+] Author and Article Information
C. C. Nelson

Mechanical Engineering Department, Texas A&M University, College Station, Texas 77843

J. Eng. Gas Turbines Power 106(4), 927-934 (Oct 01, 1984) (8 pages) doi:10.1115/1.3239660 History: Received December 19, 1983; Online October 15, 2009


In order to soften the effects of rub, the smooth stators of turbine gas seals are sometimes replaced by a honeycomb surface. This deliberately roughened stator and smooth rotor combination retards the seal leakage and may lead to enhanced rotor stability. However, many factors determine the rotordynamic coefficients and little is known as to the effectiveness of these “honeycomb seals” under various changes in the independent seal parameters. This analysis develops an analytical-computational method to solve for the rotordynamic coefficients of this type of compressible-flow seal. The governing equations for surface-roughened tapered annular gas seals are based on a modified Hirs’s turbulent bulk flow model. A perturbation analysis is employed to develop zeroth and first-order perturbation equations. These equations are numerically integrated to solve for the leakage, pressure, density, and velocity for small motion of the shaft about the centered position. The resulting pressure distribution is then integrated to find the corresponding rotor-dynamic coefficients. Finally, an example case is used to demonstrate the effect of changing from a smooth to a rough stator while varying the seal length, taper, preswirl, and clearance ratio.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In