0
RESEARCH PAPERS

An Experimental Study of the Compressor Rotor Blade Boundary Layer

[+] Author and Article Information
M. Pouagare, J. M. Galmes, B. Lakshminarayana

Department of Aerospace Engineering, The Pennsylvania State University, University Park, Pa. 16802

J. Eng. Gas Turbines Power 107(2), 364-372 (Apr 01, 1985) (9 pages) doi:10.1115/1.3239731 History: Received January 18, 1984; Online October 15, 2009

Abstract

The three-dimensional turbulent boundary layer developing on a rotor blade of an axial flow compressor was measured using a minature “x” configuration hot-wire probe. The measurements were carried out at nine radial locations on both surfaces of the blade at various chordwise locations. The data derived includes streamwise and radial mean velocities and turbulence intensities. The validity of conventional velocity profiles such as the “power law profile” for the streamwise profile, and Mager and Eichelbrenner’s for the radial profile, is examined. A modification to Mager’s crossflow profile is proposed. Away from the blade tip, the streamwise component of the blade boundary layer seems to be mainly influenced by the streamwise pressure gradient. Near the tip of the blade, the behavior of the blade boundary layer is affected by the tip leakage flow and the annulus wall boundary layer. The “tangential blockage” due to the blade boundary layer is derived from the data. The profile losses are found to be less than that of an equivalent cascade, except in the tip region of the blade.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In