Axial Compressor Stator Aerodynamics

[+] Author and Article Information
H. D. Joslyn, R. P. Dring

United Technologies Research Center, East Hartford, Conn. 06108

J. Eng. Gas Turbines Power 107(2), 485-492 (Apr 01, 1985) (8 pages) doi:10.1115/1.3239754 History: Received January 06, 1984; Online October 15, 2009


Axisymmetric, through-flow calculations, currently the “backbone” of most multistage turbomachinery design systems, are being pushed to their limit. This is due to the difference between the complex, three-dimensional flows that actually occur in turbomachinery and the two-dimensional flow assumed in this type of analysis. To foster the development of design analyses that account more accurately for these three-dimensional effects, there is a need for detailed flow field data in a multistage environment. This paper presents a survey of the initial results from a detailed experimental study of the aerodynamics of the second stage of a large scale, two-stage axial compressor. Data were acquired over a range of flow coefficients. The data presented here are for the second stator and include airfoil and endwall flow visualization, and radial-circumferential traverse measurements presented in the form of fullspan contour plots of total pressure. Also presented are the spanwise distributions of total and static pressures, axial velocity, air angles, and blockage. The effect of increased loading on the growth of the hub corner stall and its impact on these parameters is discussed.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In