Comparison of Controlled Diffusion Airfoils With Conventional NACA 65 Airfoils Developed for Stator Blade Application in a Multistage Axial Compressor

[+] Author and Article Information
H. Rechter, W. Steinert

DFVLR, Köln, West Germany

K. Lehmann

MTU München, West Germany

J. Eng. Gas Turbines Power 107(2), 494-498 (Apr 01, 1985) (5 pages) doi:10.1115/1.3239758 History: Received January 19, 1984; Online October 15, 2009


In their transonic cascade wind tunnel, DFVLR has done measurements on a conventional NACA 65, as well as on a controlled diffusion airfoil, designed for the same velocity triangle at supercritical inlet condition. These tested cascades represent the first stator hub section of a three-stage axial/one-stage radial combined compressor developed by MTU with the financial aid of the German Ministry of Research and Technology. One aspect of this project was the verification of the controlled diffusion concept for axial compressor blade design, in order to demonstrate the capabilities of some recent research results which are now available for industrial application. The stator blades of the axial compressor section were first designed using NACA 65 airfoils. In the second step, the controlled diffusion technique was applied for building a new stator set. Both stator configurations were tested in the MTU compressor test facility. Cascade and compressor tests revealed the superiority of the controlled diffusion airfoils for axial compressors. In comparison to the conventional NACA blades, the new blades obtained a higher efficiency. Furthermore, a closer matching of the compressor performance data to the design requirements was possible due to a more precise prediction of the turning angle.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In