Effects of Tip Endwall Contouring on the Three-Dimensional Flow Field in an Annular Turbine Nozzle Guide Vane: Part 1—Experimental Investigation

[+] Author and Article Information
E. Boletis

von Karman Institute for Fluid Dynamics, 1640 Rhode Saint Genèse, Belgium

J. Eng. Gas Turbines Power 107(4), 983-990 (Oct 01, 1985) (8 pages) doi:10.1115/1.3239845 History: Received December 21, 1984; Online October 15, 2009


Tip endwall contouring is one of the most effective methods to improve the performance of low aspect ratio turbine vanes [1]. In view of the wide variety of geometric parameters, it appears that only the physical understanding of the three-dimensional flow field will allow us to evaluate the probable benefits of a particular endwall contouring. The paper describes the experimental investigation of the three-dimensional flow through a low-speed, low aspect ratio, high-turning annular turbine nozzle guide vane with meridional tip endwall contouring. The full impact of the effects of tip contouring is evaluated by comparison with the results of a previous study in an annular turbine nozzle guide vane of the same blade and cascade geometry with cylindrical endwalls [12]. In parallel, the present experimental study provides a fully three-dimensional test case for comparison with advanced theoretical calculation methods [15]. The flow is explored by means of double-head, four-hole pressure probes in five axial planes from far upstream to downstream of the blade row. The results are presented in the form of contour plots and spanwise pitch-averaged distributions.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In