0
RESEARCH PAPERS

Dynamic Response of a Centrifugal Blower to Periodic Flow Fluctuations

[+] Author and Article Information
A. N. Abdel-Hamid

The American University in Cairo, Cairo, Egypt

J. Eng. Gas Turbines Power 108(1), 77-82 (Jan 01, 1986) (6 pages) doi:10.1115/1.3239888 History: Received January 16, 1985; Online October 15, 2009

Abstract

Experimental investigation of the dynamic response of a centrifugal blower to periodic flow rate modulations was carried out at different blower operating conditions. For modulation frequencies in the range of 0.0085–0.085 of the shaft rotation frequency, the fluctuating pressures at inlet, discharge, and across a flow orifice were simultaneously measured and analyzed in the time and frequency domains. Measurements of the amplitude and phase of the transfer function between the blower static pressure rise and the discharge flow rate fluctuations indicated that the quasi-steady approximation should be limited to frequencies lower than 0.02 of the shaft rotation frequency. For the same average flow rate, the static pressure rise progressively lagged the discharge flow rate fluctuations as the frequency was increased. The trend was similar to that of the inertia effects of a fluctuating flow in a pipe. For the same frequency these inertia effects increased as the average flow rate through the blower was decreased. Applications of the results to on-line measurements of the slope of the characteristic curve and improved dynamic modeling of centrifugal compressors and blowers are discussed.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In