Fuel Oil Reburning Application for NOx Control to Firetube Package Boilers

[+] Author and Article Information
J. A. Mulholland, R. E. Hall

U. S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, Research Triangle Park, NC 27711

J. Eng. Gas Turbines Power 109(2), 207-214 (Apr 01, 1987) (8 pages) doi:10.1115/1.3240026 History: Received June 18, 1985; Online October 15, 2009


Two pilot-scale (0.73 MW or 2.5 × 106 Btu/hr) firetube package boilers were retrofitted for fuel oil reburning application for NOx emission control. When firing distillate fuel oil (0.01 percent nitrogen content), an overall NOx reduction of 46 percent from an uncontrolled emission of 125 ppm (dry, at zero percent O2 ) was realized by diverting 20 percent of the total boiler load to a second stage burner; a 51 percent NOx reduction from 265 ppm was achieved in a distillate/residual fuel oil mixture (0.14 percent nitrogen content) reburning application. Nitrogen-free fuel oil reburning was found to be slightly more effective at reducing NOx than was natural gas reburning, although longer fuel-rich zone residence times were required to allow for evaporation and mixing of the fuel oil droplets. Key parameters investigated which impact the reburning process were: primary flame NOx , reburn zone stoichiometry, and reburn zone residence time. Reburning applied to firetube package boilers requires minimal facility modification. Reburning can be coupled with other NOx control techniques (e.g., distributed air low NOx burners) to achieve NOx emissions of less than 100 ppm. However, for very low primary flame NOx conditions (i.e., less than 200 ppm), reburning fuel nitrogen content is a limiting factor, and reburning with a low-nitrogen-content fuel, such as natural gas or nitrogen-free distillate oil, may be necessary to achieve 50 percent NOx reduction.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In