0
RESEARCH PAPERS

Field Evaluation of Gas Turbine Protective Coatings

[+] Author and Article Information
A. McMinn

Southwest Research Institute, San Antonio, TX 78284

R. Viswanathan, C. L. Knauf

Electric Power Research Institute, Palo Alto, CA 94303

J. Eng. Gas Turbines Power 110(1), 142-149 (Jan 01, 1988) (8 pages) doi:10.1115/1.3240077 History: Received January 14, 1986; Online October 15, 2009

Abstract

The hot corrosion resistance of several protective coatings that had been applied to MAR-M-509 nozzle guide vanes and exposed in a utility gas turbine has been evaluated. The coatings included basic aluminide, rhodium-aluminide, platinum-rhodium-aluminide, and palladium-aluminide diffusion coatings, and cobalt-chromium-aluminum-yttrium (CoCrAlY) and ceramic overlay coatings. A combination of metallographic examination of vane cross sections and energy dispersive X-ray analysis (EDS) was employed in the evaluation. The results showed that none of the coatings was totally resistant to corrosive attack. The CoCrAlY and platinum-rhodium-aluminide coatings exhibited the greatest resistance to hot corrosion. The CoCrAlY coated vanes were, however, susceptible to thermal fatigue cracking. Except for the poor performance of the palladium-aluminide coating, the precious metal aluminides offered the best protection against corrosion. Hot isostatically pressing coatings was not found to be beneficial, and in one case appeared detrimental.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In