0
RESEARCH PAPERS

A Fresh Look at the Mechanism of Corrosion in Boilers

[+] Author and Article Information
H. M. Rivers

Hall Laboratories Division, Calgon Corporation, Pittsburgh, Pa.

J. Eng. Power 88(4), 378-381 (Oct 01, 1966) (4 pages) doi:10.1115/1.3678554 History: Received August 03, 1965; Online January 10, 2012

Abstract

Block specimen, hydrogen effusion, and model boiler experiments have shown that mild steel, after a brief period of “flash” oxidation immediately following immersion in aqueous solution, either corrodes relatively slowly with the formation of a thin, corrosion-resistant magnetite film, or corrosion proceeds rapidly with the development of a non-protective accumulation of iron oxide. In the latter case, film-destructive mechanisms induced experimentally by combinations of high temperature, stress, and quite high concentrations of hydroxide alkalinity or ferrous chloride have produced examples of generalized severe metal loss, pitting, heavy oxide accumulation, and hydrogen damage remarkably similar to corrosion manifestations responsible for metal failure in real boilers.

Copyright © 1966 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In