0
RESEARCH PAPERS

Experimental Investigation of Electrostatic Dispersion and Combustion of Diesel Fuel Jets

[+] Author and Article Information
C. P. Bankston, L. H. Back, E. Y. Kwack

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

A. J. Kelly

School of Engineering and Applied Sciences, Princeton University, Princeton, NJ 08544

J. Eng. Gas Turbines Power 110(3), 361-368 (Jul 01, 1988) (8 pages) doi:10.1115/1.3240130 History: Received July 28, 1987; Online October 15, 2009

Abstract

An experimental study of electrostatically atomized and dispersed diesel fuel jets has been conducted. A new electrostatic injection technique has been utilized to generate continuous, stable fuel sprays at charge densities of 1.5–2.0 C/m3 of fluid. Model calculations show that such charge densities may enhance spray dispersion under diesel engine conditions. Fuel jets were injected into room temperature air at one atmosphere at flow rates of 0.25–1.0 cm3 /s and delivery pressures of 100–400 kPa. Measured mean drop diameters were near 150 μm with 30 percent of the droplets being less than 100 μm in diameter at typical operating conditions. The electrical power required to generate these sprays was less than 10−6 times the chemical energy available from the fuel. The spray characteristics of an actual diesel engine injector were also studied. The results show considerable differences in spray characteristics between the diesel injector and electrostatic injection. Finally, ignition and stable combustion of electrostatically dispersed diesel fuel jets was achieved. The results show that electrostatic fuel injection can be achieved at practical flow rates, and that the characteristics of the jet breakup and dispersion have potential application to combustion systems.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In