Coal–Water Slurry Operation in an EMD Diesel Engine

[+] Author and Article Information
C. M. Urban, H. E. Mecredy, T. W. Ryan, M. N. Ingalls

Southwest Research Institute, San Antonio, TX 78284

B. T. Jett

Electro-Motive Division, General Motors Corporation, La Grange, IL

J. Eng. Gas Turbines Power 110(3), 437-443 (Jul 01, 1988) (7 pages) doi:10.1115/1.3240140 History: Received November 01, 1987; Online October 15, 2009


The U.S. Department of Energy, Morgantown Energy Technology Center has assumed a leadership role in the development of coal-burning diesel engines. The motivation for this work is obvious when one considers the magnitude of the domestic reserves of coal and the widespread use of diesel engines. The work reported in this paper represents the preliminary engine experiments leading to the development of a coal-burning, medium-speed diesel engine. The basis of this development effort is a two-stroke, 900 rpm, 216-mm (8.5-in.) bore engine manufactured by Electro-Motive Division of General Motors Corporation. The engine, in a minimally modified form, has been operated for several hours on a slurry of 50 percent (by mass) coal in water. Engine operation was achieved in this configuration using a pilot injection of diesel fuel to ignite the main charge of slurry. A standard unit injector, slightly modified by increasing diametric clearances in the injector pump and nozzle tip, was used to inject the slurry. Under the engine operating conditions evaluated, the combustion efficiency of the coal and the NOx emissions were lower than, and the particulate emissions were higher than, corresponding diesel fuel results. These initial results, achieved without optimizing the system on the coal slurry, demonstrate the potential for utilizing coal slurry fuels.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In