Effects of Fuel Overpenetration and Overmixing During Ignition-Delay Period on Hydrocarbon Emissions From a Small Open-Chamber Diesel Engine

[+] Author and Article Information
T.-W. Kuo, K.-J. Wu, S. Henningsen

Engine Research Department, General Motors Research Laboratories, Warren, MI 48090

J. Eng. Gas Turbines Power 110(3), 453-461 (Jul 01, 1988) (9 pages) doi:10.1115/1.3240142 History: Received April 01, 1987; Online October 15, 2009


A quasi-steady gas-jet model was applied to examine the spray trajectory in swirling flow during the ignition-delay period in an open-chamber diesel engine timed to start combustion at top dead center. Spray penetration, deflection, and the fractions of too-lean-mixed, burnable, and overpenetrated fuel at the start of combustion were calculated by employing the measured ignition delay and mean fuel-injection velocity. The calculated parameters were applied to correlate the measured exhaust hydrocarbon (HC) emissions. The engine parameters examined were bowl geometry, compression ratio, overall air-fuel ratio, and speed. Both the ignition delay and the relative spray-penetration parameter, defined as the ratio of the spray-penetration distances at the moments of start of combustion and wall impingement, gave good correlations for some of the engine parameters examined but could not explain all the measured trends. However, good correlation of the measured exhaust HC emissions was obtained by using the calculated too-lean-mixed and overpenetrated fuel fractions at the start of combustion. Correlation of the overpenetrated fuel with the measured HC indicated that approximately 2 percent of the fuel mass that overpenetrated before start of combustion emitted from the engine as unburned HC. This could account for 0 to 65 percent of the total HC emission from this engine. Additionally, it was found that the too-lean-mixed fuel could contribute 10 to 30 percent of the total HC emission, as found in a previous study on a somewhat similar engine. The remaining HC emission is caused by other sources such as bulk quenching.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In