Scalar Characteristics of Combusting Flow in a Model Annular Combustor

[+] Author and Article Information
A. F. Bicen, M. Senda, J. H. Whitelaw

Imperial College of Science & Technology, Department of Mechanical Engineering, Fluids Section, London SW7 2BX, United Kingdom

J. Eng. Gas Turbines Power 111(1), 90-96 (Jan 01, 1989) (7 pages) doi:10.1115/1.3240233 History: Received December 09, 1987; Online October 15, 2009


Temperature and species concentration measurements have been obtained in a model combustor operating at an inlet temperature of 515 K and atmospheric pressure and are reported and discussed. The model comprises two rectangular sectors representing the primary and upper dilution zones of an annular combustor used in small gas-turbine engines. Natural gas (94 percent CH4 ) was used as fuel and was delivered through a T-vaporizer at rates that led to air-fuel ratios of 29 and 50, similar to those of take-off and ground-idle conditions, respectively. Temperatures were obtained at the exit of the combustor using fine-wire thermocouples and mean concentrations of major species were obtained in the primary zone and at the exit on a dry basis by gas sampling and analysis. The results show that the 200 K increase in inlet air temperature reduces the pattern factor from 0.55 to 0.3 and increases the combustion efficiency from 69 to 94 percent with the air-fuel ratio of 29. The higher air-fuel ratio improves the combustion efficiency to 97.6 percent but results in a worse pattern factor of 0.48. The results confirm the need for consideration of the rate-controlled CO → CO2 reaction in the dilution zone if CO emission is to be calculated correctly and temperatures are to be within 150 K. Examination of temperatures obtained from a local enthalpy balance shows that they are higher than measurements obtained with preheat, in contrast to a similar comparison without preheat.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In