XG40—Advanced Combat Engine Technology Demonstrator Program

[+] Author and Article Information
A. F. Jarvis

Rolls-Royce plc, Bristol, United Kingdom

J. Eng. Gas Turbines Power 111(2), 193-199 (Apr 01, 1989) (7 pages) doi:10.1115/1.3240236 History: Received September 21, 1987; Online October 15, 2009


Commenced in 1982, the XG40 program is central to the demonstration of Rolls-Royce technology appropriate to the requirements of the advanced combat engine for mid-1990s operation. At the same time, the technology in scaled form is viewed as having wider application than for the advanced combat engine alone. This program is jointly funded by UK MoD and Rolls-Royce. In the paper the concepts and scope of the program are described. Associations with previous research programs and other advanced technology demonstrator programs of Rolls-Royce are stated. To meet the multirole capabilities of the advanced fighter and taking the European requirements in particular, the combat engine must be designed to give enhanced dry thrust, retain good dry specific fuel consumption, and reduce reheated fuel consumption compared with current fighter engines. A thrust/weight ratio of 10:1 is targeted and at the same time, requirements for operating cost, reliability, and durability are stringent. As a demonstrator, XG40 has been designed to meet the foregoing performance requirements. At the same time, advanced materials, manufacturing technology, and design of structures have been incorporated to enable the required levels of reliability, durability, component cost, and weight to be demonstrated. Although a demonstrator, XG40 was designed at a scale judged to be appropriate to the likely next generation European fighter requirement. Thus, the engine is in the 90/95 kN nominal Sea Level Static Combat thrust class. Configuration and design are discussed. XG40 is a total technology demonstration program. Principal modules each have a full-scale aerothermal rig program and appropriate structure rig programs. Apart from rigs, the program, including durability testing, utilizes a number of cores and engines plus spares. Achievements and progress toward milestones are reviewed.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In