Investigation of Swirler/Dilution Jet Flow Split on Primary Zone Flow Patterns in a Water Model Can-Type Combustor

[+] Author and Article Information
P. Koutmos, J. J. McGuirk

Imperial College of Science and Technology, Department of Mechanical Engineering, Fluids Section, London SW7 2BX United Kingdom

J. Eng. Gas Turbines Power 111(2), 310-317 (Apr 01, 1989) (8 pages) doi:10.1115/1.3240253 History: Received January 17, 1989; Online October 15, 2009


LDA measurements of the three mean velocity components and the corresponding turbulence intensities have been made to provide qualitative and quantitative information on the flow field in a water model of a can-type gas turbine combustion chamber. The combustor geometry comprised a swirl-driven primary zone, annulus-fed rows of primary and secondary jets, and an exit contraction. The effect of variation of the flow split between the swirler and the dilution holes on the flow pattern in the primary zone has been investigated in detail. Flow visualization studies revealed that significant changes occur in this region due to the interaction between the swirling flow and the radially directed primary jets. A large toroidal recirculation was formed and high levels of turbulence energy were generated in the core of the combustor at low levels of swirler flow rate. As the swirl level increases, the strength of this recirculation was observed to weaken. Beyond a critical level, the primary recirculation was pushed off center and the undesirable feature of a forward velocity on the combustor axis in the primary zone was observed. Despite the dramatic changes brought about in the primary zone, the flow pattern downstream of the secondary jets was practically the same for all flow splits due to the strong mixing caused by the two rows of jets.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In