0
RESEARCH PAPERS

Extraction Techniques and Analysis of Turbulence Quantities From In-Cylinder Velocity Data

[+] Author and Article Information
A. E. Catania, A. Mittica

Dipartimento di Energetica, Politecnico di Torino, Turin, Italy

J. Eng. Gas Turbines Power 111(3), 466-478 (Jul 01, 1989) (13 pages) doi:10.1115/1.3240277 History: Received August 01, 1988; Online October 15, 2009

Abstract

In addition to the frequently used statistical ensemble-average, non-Reynolds filtering operators have long been proposed for nonstationary turbulent quantities. Several techniques for the reduction of velocity data acquired in the cylinder of internal combustion reciprocating engines have been developed by various researchers in order to separate the “mean flow” from the “fluctuating motion,” cycle by cycle, and to analyze small-scale engine turbulence by statistical methods. Therefore a thorough examination of these techniques and a detailed comparison between them would seem to be a preliminary step in attempting a general study of unconventional averaging procedures for reciprocating engine flow application. To that end, in the present work, five different cycle-resolved data reduction methods and the conventional ensemble-average were applied to the same in-cylinder velocity data, so as to review and compare them. One of the methods was developed by the authors. The data were acquired in the cylinder of a direct-injection automotive diesel engine, during induction and compression strokes, using an advanced hot-wire anemometry technique. Correlation and spectral analysis of the engine turbulence, as determined from the data with the different procedures, were also performed.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In