Axial Turbine Performance Evaluation. Part B—Optimization With and Without Constraints

[+] Author and Article Information
O. E. Baljé

Sherman Oaks, Calif.

R. L. Binsley

Rocketdyne, a Division of North American Rockwell Corp., Canoga Park, Calif.

J. Eng. Power 90(4), 349-359 (Oct 01, 1968) (11 pages) doi:10.1115/1.3609212 History: Received December 18, 1967; Online August 25, 2011


The maximum obtainable efficiency and associated geometry have been calculated based on the use of generalized loss correlations from Part A and are presented for full and partial admission turbines over a wide range of specific speeds. The calculated effects of varying values of Reynolds number, tip clearance, and trailing edge thickness on turbine performance are presented. Because of the anticipated difficulty in fabricating some of the optimum geometries calculated, the effects of using nonoptimum values of geometric parameters on attainable efficiency have also been investigated. The derating factor for machine Reynolds number is shown to be a strong function of specific speed, varying from 0.96 at a specific speed of 100, to 0.6 at a specific speed of 3, when Reynolds number is 105 compared to a reference value of 106 . The derating factor for tip clearance is shown to be similar to what would be expected if the clearance area were considered as a leakage area. The use of blade heights, blade numbers, rotor exit angles, and degrees of reaction varying from the optimum by 25 percent produce maximum derating factors of 0.99, 0.98, 0.985, and 0.97, respectively, when compared to full optimum values.

Copyright © 1968 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In