Rub Interactions of Flexible Casing Rotor Systems

[+] Author and Article Information
F. K. Choy, J. Padovan, C. Batur

Department of Mechanical Engineering, The University of Akron, Akron, OH 44325

J. Eng. Gas Turbines Power 111(4), 652-658 (Oct 01, 1989) (7 pages) doi:10.1115/1.3240308 History: Received September 15, 1987; Online October 15, 2009


Rub interactions between a rotor assembly and its corresponding casing structure has long been one of the major causes for machine failure. Fracture/fatigue failures of turbine impeller blade components may even lead to catastrophic consequences. This paper presents a comprehensive analysis of a complex rotor-bearing-blade-casing system during component rub interactions. The modal method is used in this study. Orthonormal coupled rotor-casing modes are used to obtain accurate relative motion between rotor and casing. External base vibration input and the sudden increase of imbalance are used to simulate suddenly imposed adversed operating condition. Nonlinear turbine/impeller blade effects are included with the various stages of single/multiple blade participation. A variable integration time step procedure is introduced to insure both accuracy and efficiency in numerical solutions. The dynamic characteristics of the system are examined in both the time domain and the frequency domain using a numerical FFT procedure. Nonlinear bearing and seal forces are also included to enhance a better simulation of the operating system. Frequency components of the system spectral characteristics will be correlated with the localized rub excitations to enable rub signature analysis. A multibearing flexible casing rotor system will be used as an example. Conclusions will be drawn from the results of an extensive parametric study.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In