Thermodynamic Analysis of Indirect Injection Diesel Engines by Two-Zone Modeling of Combustion

[+] Author and Article Information
D. A. Kouremenos, C. D. Rakopoulos, D. Hountalas

Thermal Engineering Section, Mechanical Engineering Department, National Technical University of Athens, Athens 106 82, Greece

J. Eng. Gas Turbines Power 112(1), 138-149 (Jan 01, 1990) (12 pages) doi:10.1115/1.2906468 History: Received January 25, 1989; Revised June 06, 1989; Online April 24, 2008


This work presents a thermodynamic analysis of a naturally aspirated, four-stroke, diesel engine with a swirl prechamber, under firing conditions during the open and closed part of the cycle. For calculating the heat exchange between gas and walls in both the main chamber and (swirl) prechamber, the relevant characteristic velocities and lengths are calculated by setting up a zero-dimensional energy cascade turbulence model. One-dimensional, quasi-steady, compressible flow with heat transfer inside the throat passageway connecting the two chambers is used. Combustion in both the main chamber and the swirl prechamber is attacked by proposing a two-zone combustion model, and following the movement of the spray plume inside an air solid body rotation environment in the prechamber and its later progression into the main chamber through the connecting throat. To validate the analysis, an extensive experimental investigation is undertaken at the laboratory of the authors on a flexible Ricardo, single-cylinder, swirl chamber diesel engine, and evaluating its performance in a wide range of operating conditions. The experimental results are found to be in good agreement with the theoretical results obtained from the computer program implementing the analysis.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In