0
RESEARCH PAPERS

Laminar Flow Gas Turbine Regenerators—The Influence of Manufacturing Tolerances

[+] Author and Article Information
A. L. London

Mechanical Engineering, Stanford University, Standford, Calif.

J. Eng. Power 92(1), 46-56 (Jan 01, 1970) (11 pages) doi:10.1115/1.3445299 History: Received July 25, 1969; Online July 14, 2010

Abstract

Several current designs for high effectiveness gas turbine regenerators involve low Reynolds number fully developed, laminar flow type surfaces. Such surfaces consist of cylindrical flow passages, of small hydraulic radius, in parallel. The cylinder geometry may, as examples, be triangular, as in some glass-ceramic surfaces, or rectangular, as in deepfold metal foil surfaces. This presentation demonstrates that manufacturing tolerances of several thousandths of an in. in passage dimension have a significant influence on the overall heat transfer and flow friction behavior. The analysis is also useful in rationalizing the difference between theory and test results for the basic heat transfer (j factor) and friction (f factor) characteristics as a function of Reynolds number for various surfaces of the laminar flow type.

Copyright © 1970 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In