0
RESEARCH PAPERS

Vibration Characteristics of Low Aspect Ratio Compressor Blades

[+] Author and Article Information
Ralph Petricone

Applied Technology Associates, Emerson, N. J.

Fernando Sisto

Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, N. J.

J. Eng. Power 93(1), 103-112 (Jan 01, 1971) (10 pages) doi:10.1115/1.3445372 History: Received January 29, 1970; Online July 14, 2010

Abstract

This paper presents the results of a study of the vibration characteristics of low aspect ratio compressor blades. The treatment is based on thin shell theory and the Rayleigh-Ritz method is used to obtain the eigenvectors and eigenvalues. The object is to elucidate those characteristics which are inaccessible using beam theory. Results are presented which show the variation of the natural frequencies and mode shapes with angle of twist, aspect ratio, and angle of inclination of the base of the blade. A three-dimensional plot of the bending mode frequencies versus aspect ratio and twist angle is presented. Although the surfaces describing the variation of frequencies for specific modes do not intersect, there is a point of contact. This contact point is significant in the transition of mode shapes along the frequency surfaces. It is demonstrated that the “stiff-direction” or “in-plane” vibration of the untwisted plate evolves into coupled bending modes as the twist angle increases from zero and that the character of these modes changes in the vicinity of the contact point.

Copyright © 1971 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In