0
RESEARCH PAPERS

Separating Hydrogen From Coal Gasification Gases With Alumina Membranes

[+] Author and Article Information
B. Z. Egan

Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

D. E. Fain, G. E. Roettger, D. E. White

Technical Division, Oak Ridge K-25 Site, Oak Ridge, TN 37831

J. Eng. Gas Turbines Power 114(2), 367-370 (Apr 01, 1992) (4 pages) doi:10.1115/1.2906600 History: Received February 20, 1991; Online April 24, 2008

Abstract

Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9-22 Å have been fabricated and characterized. Based on the results of hydrostatic tests, the burst strength of the membranes ranged from 800-1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15-589 psi. In general, the relative gas permeabilities correlated qualitatively with a Knudsen flow mechanism; however, other gas transport mechanisms such as surface adsorption also may be involved. Efforts are under way to fabricate membranes having still smaller pores. At smaller pore sizes, higher separation factors are expected from molecular sieving effects.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In