0
RESEARCH PAPERS

Optimal Synthesis and Operation of Thermal Systems by the Thermoeconomic Functional Approach

[+] Author and Article Information
C. A. Frangopoulos

Department of Naval Architecture and Marine Engineering, National Technical University of Athens, Zografou, Greece

J. Eng. Gas Turbines Power 114(4), 707-714 (Oct 01, 1992) (8 pages) doi:10.1115/1.2906646 History: Received January 10, 1991; Revised July 02, 1991; Online April 24, 2008

Abstract

Methods developed for optimization of thermal systems usually work on a predetermined configuration of the system. Consequently, in order to select the best system, it is necessary to apply the method separately for each possible configuration and compare the results. The designer’s work would be significantly facilitated, if the optimization method could synthesize the optimal configuration of the system automatically. Such a method is presented here, based on the Thermoeconomic Functional Approach (TFA). TFA is a method developed for optimal design or improvement of complex thermal systems. It combines thermodynamic concepts with economic considerations in a systems approach. A thermal system is considered as a set of interrelated units; each unit has one particular function (purpose, or product). The documented determination of the function of the system as a whole and of each unit individually is achieved by functional analysis. The problem is mathematically formulated (objective function, constraints) at two levels: (A) optimization of operation, (B) optimization of the configuration and the design of the system. The solution is obtained by a two-level algorithm. As an example, the method is used to optimize a cogeneration system supplying a process plant with heat and electricity, which are known functions of time.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In