Experimental Investigation of Film Cooling With Ejection From a Row of Holes for the Application to Gas Turbine Blades

[+] Author and Article Information
C. Liess

Max-Planck-Institut für Stromungsforschung, Gottingen, Germany

J. Eng. Power 97(1), 21-27 (Jan 01, 1975) (7 pages) doi:10.1115/1.3445904 History: Received November 13, 1973; Online July 14, 2010


The adiabatic wall effectiveness and the heat transfer coefficient is determined experimentally on a flat plate downstream of a row of inclined circular ejection holes. The measuring technique provides local values in downstream direction and averaged values in lateral direction. The ejection geometry is kept constant, i.e., ejection angle β = 35 deg, spacing to diameter ratio of ejection holes s/d = 3. The range of flow parameters corresponds closely to the conditions encountered on gas turbine blades. The main flow Mach number varies from 0.3 to 0.9, the mass velocity ratio from 0.1 to 2.0. Two favorable pressure gradients in the main flow are applied and several ratios of main flow boundary layer displacement thickness to ejection hole diameter. The main flow boundary layer upstream of the ejection is laminar and turbulent.

Copyright © 1975 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In