0
RESEARCH PAPERS

Dynamic Force Response of an Open-Ended Squeeze Film Damper

[+] Author and Article Information
L. A. San Andres, G. Meng, S. Yoon

Mechanical Engineering Department, Texas A&M University, College Station, TX 77843

J. Eng. Gas Turbines Power 115(2), 341-346 (Apr 01, 1993) (6 pages) doi:10.1115/1.2906714 History: Received March 04, 1991; Online April 24, 2008

Abstract

The effects of whirl frequency and lubricant viscosity on the experimental pressure field and film forces in an open-ended squeeze film damper test rig are presented. The measurements refer to circular centered journal motion of amplitude equal to one half the damper clearance (ε = 0.5). The whirl frequency varied between 16 Hz and 85 Hz, while the lubricant temperature increased from 25°C to 45°C. The damper operated with levels of external pressurization that supressed lubricant cavitation. The experimental results show conclusively that the radial film force is purely an inertial effect, i.e., it depends solely on the fluid density and the second power of the whirl frequency. The tangential film force shows a variation that depends on the viscous and inertial flow conditions in the squeeze film region. Correlation of experimental forces with conventional SFD models shows the radial force to be π times larger than the theoretical prediction, while the tangential force correlates well for low whirl frequencies and large lubricant viscosities.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In