Rotordynamic Evaluation of an Advanced Multisqueeze Film Damper—Imbalance Response and Blade-Loss Simulation

[+] Author and Article Information
J. F. Walton, H. Heshmat

Mechanical Technology Inc., Latham, NY 12110

J. Eng. Gas Turbines Power 115(2), 347-352 (Apr 01, 1993) (6 pages) doi:10.1115/1.2906715 History: Received March 04, 1991; Online April 24, 2008


In this paper results of rotordynamic response and transient tests of a novel, high load squeeze film damper design are presented. The spiral foil multisqueeze film damper has been previously shown to provide two to fourfold or larger increases in damping levels without resorting to significantly decreased damper clearances or increased lengths. By operating with a total clearance of approximately twice conventional designs, the nonlinearities associated with high-eccentricity operation are avoided. Rotordynamic tests with a dual squeeze film configuration were completed. As a part of the overall testing program, a flexible rotor system was subjected to high steady-state imbalance levels and transient simulated blade-loss events for up to 0.254 mm (0.01 in.) mass c. g. offset or 180 g-cm (2.5 oz-in.) imbalance. The spiral foil multisqueeze film damper demonstrated that the steady-state imbalance and simulated blade-loss transient response of a flexible rotor operating above its first bending critical speed could be readily controlled. Rotor system imbalance sensitivity and logarithmic decrement are presented showing the characteristics of the system with the damper installed. The ability to accommodate high steady-state and transient imbalance conditions make this damper well suited to a wide range of rotating machinery, including aircraft gas turbine engines.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In