0
RESEARCH PAPERS

Semianalytical Correlations for NOx, CO, and UHC Emissions

[+] Author and Article Information
N. K. Rizk, H. C. Mongia

Allison Gas Turbine Division, General Motors Corporation, Indianapolis, IN 46206

J. Eng. Gas Turbines Power 115(3), 612-619 (Jul 01, 1993) (8 pages) doi:10.1115/1.2906750 History: Received February 06, 1992; Online April 24, 2008

Abstract

To meet the future goals of reduced emissions produced by gas turbine combustors, a better understanding of the process of formation of various pollutants is required. Both empirical and analytical approaches are used to provide the exhaust concentrations of pollutants of interest such as NOx , CO, and unburned hydrocarbon with varying degrees of success. In the present investigation, an emission model that simulates the combustor by a number of reactors representing various combustion zones is proposed. A detailed chemical kinetic scheme was used to provide a fundamental basis for the derivation of a number of expressions that simulate the reaction scheme. The model addresses the combined effects of spray evaporation and mixing in the reaction zone. The model validation included the utilization of a large data base obtained for an annular combustor of a modern turbopropulsion engine. In addition to the satisfactory agreement with the measurements, the model provided insight into the regions within the combustor that could be responsible for the excessive formation of emissions. Methods to reduce the emissions may be implemented in light of such information.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In