0
RESEARCH PAPERS

Stability of Squeeze-Film-Damper Supported Flexible Rotors

[+] Author and Article Information
M. D. Rabinowitz, E. J. Hahn

The University of N.S.W., Kensington, N.S.W., Australia

J. Eng. Power 99(4), 545-551 (Oct 01, 1977) (7 pages) doi:10.1115/1.3446549 History: Received December 17, 1976; Online July 14, 2010

Abstract

Assuming the short bearing approximation and symmetric motions, the stability of the steady-state synchronous operation of centrally preloaded single-mass flexible rotors supported in squeeze-film bearing dampers is theoretically investigated. The stability regions are depicted over a wide range of system parameters and allow for easy determination of the stability of existing steady-state design data. The influence of rotor flexibility, rotor speed, bearing dimensions, lubricant viscosity, rotor mass distribution, and rotor unbalance on rotor-bearing system stability may be readily seen. In the absence of pressurization, instability regions were possible even with relatively high support damping, though no instability was indicated for speeds below the support natural frequency, or for bearing eccentricity ratio <0.4 at any speed. Pressurization of the lubricant supply was found to stabilize the system over the whole range of parameters investigated, regardless of unbalance, which would then be limited only by the bearing clearance. Data are presented which enable the minimum supply pressure to ensure full film lubrication to be conveniently determined.

Copyright © 1977 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In