A Potential Low NOx Emission Combustor for Gas Turbines Using the Concept of Hybrid Combustion

[+] Author and Article Information
S. E. Mumford, W. S. Y. Hung

Generation Systems Division, Westinghouse Electric Corp., Lester Branch, Philadelphia, Pa.

P. P. Singh

Westinghouse Research Laboratories, Pittsburgh, Pa.

J. Eng. Power 99(4), 631-637 (Oct 01, 1977) (7 pages) doi:10.1115/1.3446560 History: Received December 09, 1976; Online July 14, 2010


An experimentally verified NOx emission model has been described previously to predict accurately the NOx emission characteristics of conventional gas turbine combustors as well as laboratory scaled premixed combustor. Experimental data and analyses indicated that a hybrid combustor, which utilizes features of both the conventional and the premixed combustors, has the potential to be a viable low NOx emission combustor. Initial calculations indicated low NOx emission levels for the hybrid combustor. This hybrid combustion concept was tested in the laboratory. The measured NOx emissions from this laboratory-scaled hybrid combustor were in excellent agreement with the analytical predictions. The emissions of carbon monoxide and unburned hydrocarbons were also measured. It has been concluded from an analysis of the measured data that a gas turbine combustor, designed with the hybrid combustion concept, has the best potential to be a near-term viable combustor in meeting the EPA proposed gas turbine emission regulations. The experimental effort thus far has focused on the emission characteristics. Other areas of the design, such as the vaporization of liquid fuels, require additional development work prior to the incorporation of this concept into a viable system for an engine application.

Copyright © 1977 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In