RESEARCH PAPERS: Gas Turbines: Aircraft

Turbine Engine Icing Spray Bar Design Issues

[+] Author and Article Information
C. S. Bartlett

Department of Propulsion Testing Technology, AEDC Group, Arnold Engineering Development Center, Sverdrup Technology, Inc., Arnold AFB, TN 37389

J. Eng. Gas Turbines Power 117(3), 406-412 (Jul 01, 1995) (7 pages) doi:10.1115/1.2814110 History: Received March 17, 1994; Online November 19, 2007


Techniques have been developed at the Engine Test Facility (ETF) of the Arnold Engineering Development Center (AEDC) to simulate flight through atmospheric icing conditions of supercooled liquid water droplets. Ice formed on aircraft and propulsion system surfaces during flight through icing conditions can, even in small amounts, be extremely hazardous. The effects of ice are dependent on many variables and are still unpredictable. Often, experiments are conducted to determine the characteristics of the aircraft and its propulsion system in an icing environment. Facilities at the ETF provide the capability to conduct icing testing in either the direct-connect (connected pipe) or the free-jet mode. The requirements of a spray system for turbine engine icing testing are described, as are the techniques used at the AEDC ETF to simulate flight in icing conditions. Some of the key issues facing the designer of a spray system for use in an altitude facility are identified and discussed, and validation testing of the design of a new spray system for the AEDC ETF is detailed. This spray system enables testing of the newest generation of high-thrust turbofan engines in simulated icing conditions.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In