Torquewhirl—A Theory to Explain Nonsynchronous Whirling Failures of Rotors With High-Load Torque

[+] Author and Article Information
J. M. Vance

Mechanical Engineering, University of Florida, Gainesville, Fla.

J. Eng. Power 100(2), 235-240 (Apr 01, 1978) (6 pages) doi:10.1115/1.3446339 History: Received June 02, 1977; Online July 14, 2010


Numerous unexplained failures of rotating machinery by nonsynchronous shaft whirling point to a possible driving mechanism or source of energy not identified by previously existing theory. A majority of these failures have been in machines characterized by overhung disks (or disks located close to one end of a bearing span) and/or high power and load torque. This paper gives exact solutions to the nonlinear differential equations of motion for a rotor having both of these characteristics and shows that high ratios of driving torque to damping can produce nonsynchronous whirling with destructively large amplitudes. Solutions are given for two cases: (1) viscous load torque and damping, and (2) load torque and damping proportional to the second power of velocity (aerodynamic case). Criteria are given for avoiding the torquewhirl condition.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In