Film Cooling of a Gas Turbine Blade

[+] Author and Article Information
S. Ito, R. J. Goldstein, E. R. G. Eckert

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

J. Eng. Power 100(3), 476-481 (Jul 01, 1978) (6 pages) doi:10.1115/1.3446382 History: Received August 04, 1977; Online July 14, 2010


The local film-cooling produced by a row of jets on a gas turbine blade is measured by a mass transfer technique. The density of the secondary fluid is from 0.75 to two times that of the mainflow and the range of the mass flux ratio is from 0.2 to three. The effect of blade-wall curvature on the film-cooling effectiveness is very significant. On the convex wall, a near tangential jet is pushed towards the wall by the static pressure force around the jet. For a small momentum flux ratio, this results in a higher effectiveness compared with that on a flat wall. At a large momentum flux ratio, however, the jet tends to move away from the curved wall because of the effect of inertia of the jet resulting in a smaller effectiveness on the convex wall. On the concave wall, the effects of curvature are the reverse of those described for the convex wall.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In