0
RESEARCH PAPERS

An Experimental Study of Three-Dimensional Turbulent Boundary Layer and Turbulence Characteristics Inside a Turbomachinery Rotor Passage

[+] Author and Article Information
A. K. Anand, B. Lakshminarayana

Department of Aerospace Engineering, The Pennsylvania State University, University Park, Pa.

J. Eng. Power 100(4), 676-687 (Oct 01, 1978) (12 pages) doi:10.1115/1.3446418 History: Received December 22, 1977; Online July 14, 2010

Abstract

Three-dimensional boundary layer and turbulence measurements of flow inside a rotating helical channel of a turbomachinery rotor are described. The rotor is a four-bladed axial flow inducer operated at large axial pressure gradient. The mean velocity profiles, turbulence intensities and shear stresses, and limiting stream-line angles are measured at various radial and chordwise locations, using rotating triaxial hot-wire and conventional probes. The radial flows in the rotor channel are found to be higher compared to those at zero or small axial pressure gradient. The radial component of turbulence intensity is found to be higher than the streamwise component due to the effect of rotation. Flow near the annulus wall is found to be highly complex due to the interaction of the blade boundary layers and the annulus wall resulting in an appreciable radial inward flow, and a large defect in the mainstream velocity. Increased level of turbulence intensity and shear stresses near the midpassage are also observed near this radial location.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In