Computations of Three-Dimensional Gas-Turbine Combustion Chamber Flows

[+] Author and Article Information
M. A. Serag-Eldin, D. B. Spalding

Mechanical Engineering Department, Imperial College of Science and Technology, London, England

J. Eng. Power 101(3), 326-336 (Jul 01, 1979) (11 pages) doi:10.1115/1.3446580 History: Received December 27, 1977; Online July 14, 2010


The paper presents a mathematical model for three-dimensional, swirling, recirculating, turbulent flows inside can combustors. The present model is restricted to single-phase, diffusion-controlled combustion, with negligible radiation heat-transfer; however, the introduction of other available physical models can remove these restrictions. The mathematical model comprises differential equations for: continuity, momentum, stagnation enthalpy, concentration, turbulence energy, its dissipation rate, and the mean square of concentration fluctuations. The simultaneous solution of these equations by means of a finite-difference solution algorithm yields the values of the variables at all internal grid nodes. The prediction procedure, composed of the mathematical model and its solution algorithm, is applied to predict the fields of variables within a representative can combustor; the results are compared with corresponding measurements. The predicted results give the same trends as the measured ones, but the quantitative agreement is not always acceptable; this is attributed to the combustion process not being truly diffusion-controlled for the experimental conditions investigated.

Copyright © 1979 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In