RESEARCH PAPERS: Gas Turbines: Combustion and Fuels

Surface Effects on Deposits From Jet Fuels

[+] Author and Article Information
J. S. Ervin, S. P. Heneghan, C. R. Martel, T. F. Williams

University of Dayton, Dayton, OH 45469

J. Eng. Gas Turbines Power 118(2), 278-285 (Apr 01, 1996) (8 pages) doi:10.1115/1.2816589 History: Received February 10, 1995; Online November 19, 2007


Flow experiments in a single-pass heat exchanger using JP-8 and certain additives were initiated under controlled conditions to explore the effects of a metal surface on deposition. The experimental apparatus permitted a unique viewing of the time evolution of deposits at different axial locations under conditions of limited oxygen availability somewhat similar to those in jet aircraft. Scanning electron microscopy was used to examine deposit microstructure. In addition, x-ray photoelectron spectroscopy and Auger electron spectroscopy determined the chemical composition of the deposits. Oxygen concentration measurements in the bulk flow were also performed, and the observed transient oxidation behavior was related to measured time-dependent changes in the deposit. Increasing dissolved oxygen levels and large changes in deposition were characteristic of the induction time. Mechanisms of fouling in the heated and cooled sections were different. Spectroscopic analysis indicated that deposits formed in the heated section had chemical compositions different from those formed in the cooled section. Scanning electron microscopy revealed differences in microstructure between the heated and cooled sections: More uniform deposits formed in the cooled section as a result of once-soluble species becoming insoluble at low temperatures. In addition, the JP-8 additives significantly reduced fouling in the heated section, but their effectiveness in the cooled section, especially after long periods, was unclear.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In