0
RESEARCH PAPERS

Dependence of Soot Production on Fuel Blend Characteristics and Combustion Conditions

[+] Author and Article Information
W. S. Blazowski

Exxon Research and Engineering Company, Corporate Applied Research Laboratories, Linden, NJ 07036

J. Eng. Power 102(2), 403-408 (Apr 01, 1980) (6 pages) doi:10.1115/1.3230270 History: Received January 03, 1979; Online September 28, 2009

Abstract

Liquid synthetic fuels derived from nonpetroleum resources will play a major role in meeting future national energy demands. In the case of gas turbine applications, it is known that the different properties of these fuels can result in substantially altered combustion performance. Most importantly, decreased fuel hydrogen content resulting from an increased aromatic content has been observed to result in increased exhaust smoke and particulates as well as greater flame luminosity. This paper contributes empirical information and insight which allows the greater soot formation tendencies of low hydrogen content fuels to be better understood. A small scale laboratory device which simulates the strongly backmixed conditions present in the primary zone of a gas turbine combustor is utilized. The Jet Stirred Combustor provides for very rapid mixing between a premixture of vaporized fuel and air and the combustion products within a 5.08 cm dia hemispherical reactor. Results to be presented are gaseous combustion product distributions, incipient soot limits, and soot production (mg/l ) for a variety of fuels. The influences of combustor inlet temperature and reactor mass loading have been evaluated and the sooting characteristics of fuel blends have been studied. These results have been analyzed to develop useful correlations which are in general agreement with existing mechanistic concepts of the soot formation process.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In