0
RESEARCH PAPERS: Gas Turbines: Combustion and Fuels

Combustor Stability and Emissions Research Using a Well-Stirred Reactor

[+] Author and Article Information
J. Zelina, D. R. Ballal

Department of Mechanical and Aerospace Engineering, University of Dayton, Dayton, OH 45469

J. Eng. Gas Turbines Power 119(1), 70-75 (Jan 01, 1997) (6 pages) doi:10.1115/1.2815564 History: Received February 10, 1995; Online November 19, 2007

Abstract

The design and development of low-emissions, lean premixed aero or industrial gas turbine combustors is very challenging because it entails many compromises. To satisfy the projected CO and NOx emissions regulations without relaxing the conflicting requirements of combustion stability, efficiency, pattern factor, relight (for aero combustor), or off-peak loading (for industrial combustor) capability demands great design ingenuity. The well-stirred reactor (WSR) provides a laboratory idealization of an efficient and highly compact advanced combustion system of the future that is capable of yielding global kinetics of value to the combustor designers. In this paper, we have studied the combustion performance and emissions using a toroidal WSR. It was found that the toroidal WSR was capable of peak loading almost twice as high as that for a spherical WSR and also yielded a better fuel-lean performance. A simple analysis based upon WSR theory provided good predictions of the WSR lean blowout limits. The WSR combustion efficiency was 99 percent over a wide range of mixture ratios and reactor loading. CO emissions reached a minimum at a flame temperature of 1600 K and NOx increased rapidly with an increase in flame temperature, moderately with increasing residence time, and peaked at or slightly on the fuel-lean side of the stoichiometric equivalence ratio. Finally, emissions maps of different combustors were plotted and showed that the WSR has the characteristics of an idealized high-efficiency, low-emissions combustor of the future.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In