0
RESEARCH PAPERS: Gas Turbines: Combustion and Fuels

A Computational Study of Pressure Effects on Pollutant Generation in Gas Turbine Combustors

[+] Author and Article Information
E. M. Amin, G. E. Andrews, M. Pourkashnian, A. Williams

Department of Fuel and Energy, The University of Leeds, Leeds, LS2 9JT, United Kingdom

R. A. Yetter

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544

J. Eng. Gas Turbines Power 119(1), 76-83 (Jan 01, 1997) (8 pages) doi:10.1115/1.2815565 History: Received March 18, 1995; Online November 19, 2007

Abstract

A numerical study of the effect of pressure on the formation of NOx and soot in an axisymmetric 30 deg counterrotating axial swirler lean low-NOx gas turbine combustor has been conducted. This has previously been studied experimentally and this CFD investigation was undertaken to explain the higher than expected NOx emissions. The combustion conditions selected for the present study were 300 K inlet air, 0.4 overall equivalence ratio, and pressures of 1 and 10 bar. The numerical model used here involved the solution of time-averaged governing equations using an elliptic flow-field solver. The turbulence was modeled using algebraic stress modeling (ASM). The thermochemical model was based on the laminar flame let formulation. The conserved scalar/assumed pdf approach was used to model the turbulence chemistry interaction. The study was for two pressure cases at 1 and 10 bar. The turbulence–chemistry interaction is closed by assumption of a clipped Gaussian function form for the fluctuations in the mixture fraction. The kinetic calculations were done separately from the flowfield solver using an opposed laminar diffusion flame code of SANDIA. The temperature and species profiles were made available to the computations through look-up tables. The pollutants studied in this work were soot and NO for which three more additional transport equations are required, namely: averaged soot mass fraction, averaged soot particle number density, and finally averaged NO mass fraction. Soot oxidation was modeled using molecular oxygen only and a strong influence of pressure was predicted. Pressure was shown to have a major effect on soot formation.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In