Arrays of Impinging Jets with Spent Fluid Removal through Vent Holes on the Target Surface—Part 1: Average Heat Transfer

[+] Author and Article Information
B. R. Hollworth

Mechanical and Industrial Engineering Department, Clarkson College of Technology, Potsdam, NY

L. Dagan

Eastman Kodak Company, Kodak Park, Rochester, NY

J. Eng. Power 102(4), 994-999 (Oct 01, 1980) (6 pages) doi:10.1115/1.3230372 History: Received December 10, 1979; Online September 28, 2009


Measurements of average convective heat transfer are reported for square arrays of impinging air jets. The target plate on which the jets impinge is perforated so that spent air is withdrawn through the plate rather than at one or more edges of the array, as is usually the case in such investigations. Jet holes and vent holes had the same diameters, but the spacing of the jet holes was twice that of the vent holes. This information is especially relevent to the design of hybrid cooling configurations, in which a surface is cooled by the combined mechanisms of impingement and transpiration. Tests were conducted for both inline arrangements (with a vent hole opposite each jet orifice) and for staggered arrangements; and the latter always yielded higher average heat transfer. The degradation of performance of inline arrays was most pronounced when the clearance between the jet orifice plate and the target plate was small. Under these conditions, a significant portion of each jet flows directly out through the opposing vent without “scrubbing” the target surface. Arrays with staggered vent holes yield heat transfer rates consistently higher (sometimes by as much as 35 percent) than the same jet array with edge venting. The authors attribute the superior performance of the former geometry to high local heat transfer due to boundary layer suction in the vicinities of the vent holes.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In