0
RESEARCH PAPERS: Power

A Tabular Taylor Series Expansion Method for Fast Calculation of Steam Properties

[+] Author and Article Information
K. Miyagawa, P. G. Hill

University of British Columbia, Vancouver, British Columbia, Canada

J. Eng. Gas Turbines Power 119(2), 485-491 (Apr 01, 1997) (7 pages) doi:10.1115/1.2815600 History: Received August 22, 1996; Online November 19, 2007

Abstract

A new method is proposed for rapid and accurate calculation of steam properties in the regions of the state plane of greatest importance to the steam power industry. The method makes direct use of the derivatives of that Helmholtz function that is the best available wide-ranging scientific formulation of the properties of steam. It is rapid because, with a six-term Taylor series expansion, it uses property values and derivatives evaluated once and for all from the Helmholtz function and stored in tables pertaining to an optimized state plane grid configuration. The method eliminates the need for iterative property calculations and is amenable to any region of the state plane. For properties in the ranges of temperature from 0 to 800°C and pressure from 0 to 100 MPa the core memory requirement for three functions of any given pair of independent properties is less than 1 Mb. With this memory allocation it is possible everywhere in the stated range to satisfy the specific volume and enthalpy tolerances specified by the International Association for the Properties of Water and Steam. An optimized formulation of the method is demonstrated in this paper for enthalpy, entropy, and volume functions of pressure and temperature in the superheat region.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In