0
RESEARCH PAPERS: Gas Turbines: Combustion and Fuels

Structure of Airblast Sprays Under High Ambient Pressure Conditions

[+] Author and Article Information
Q. P. Zheng, A. K. Jasuja, A. H. Lefebvre

School of Mechanical Engineering, Cranfield University, Cranfield, Bedford MK43 0AL United Kingdom

J. Eng. Gas Turbines Power 119(3), 512-518 (Jul 01, 1997) (7 pages) doi:10.1115/1.2817014 History: Received February 01, 1996; Online November 19, 2007

Abstract

A single-velocity-component phase Doppler particle analyzer is used to survey and measure local variations in drop-size distributions and drop velocities in the nearnozzle region of a practical, contraswirling, prefilming airblast atomizer. The technique of laser sheet imaging is used to obtain global patterns of the spray. All measurements are taken with a constant pressure drop across the atomizer of 5 percent, at ambient air pressures of 1, 6, and 12 bar. The liquid employed is aviation kerosine at flow rates up to 75 g/s. The results show that increasing the air pressure from 1 to 12 bar at a constant air/fuel ratio causes the initial spray cone angle to widen from 70 to 105 deg. Farther downstream the spray volume remains largely unaffected by variations in atomizer operating conditions. However, the radial distribution of fuel within the spray volume is such that increases in fuel flow rate cause a larger proportion of fuel to be contained in the outer regions of the spray. The effect of ambient pressure on the overall Sauter mean diameter is small. This is attributed to the fact that the rapid disintegration of the fuel sheet produced by the contraswirling air streams ensures that the atomization process is dominated by the “prompt” mechanism. For this mode of liquid breakup, theory predicts that mean drop sizes are independent of air pressure.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In