0
RESEARCH PAPERS: Gas Turbines: Combustion and Fuels

Fuel Nozzle Aerodynamic Design Using CFD Analysis

[+] Author and Article Information
D. S. Crocker, E. J. Fuller, C. E. Smith

CFD Research Corporation, Huntsville, AL 35805

J. Eng. Gas Turbines Power 119(3), 527-534 (Jul 01, 1997) (8 pages) doi:10.1115/1.2817017 History: Received February 01, 1996; Online November 19, 2007

Abstract

The aerodynamic design of airflow passages in fuel injection systems can be significantly enhanced by the use of CFD analysis. Attempts to improve the efficiency of the fuel nozzle design process by using CFD analyses have generally been unsuccessful in the past due to the difficulties of modeling swirling flow in complex geometries. Some of the issues that have been obstacles to successful and timely analysis of fuel nozzle aerodynamics include grid generation, turbulence models, and definition of boundary conditions. This study attempts to address these obstacles and demonstrate a CFD methodology capable of modeling swirling flow within the internal air passages of fuel nozzles. The CFD code CFD-ACE was used for the analyses. Results of nonreacting analyses and comparison with experimental data are presented for three different fuel nozzles. The three nozzles have distinctly different designs (including axial and radial inflow swirlers) and thus demonstrate the flexibility of the design methodology. Particular emphasis is given to techniques involved in predicting the effective flow area (ACd) of the nozzles. Good agreement between CFD predictions of the ACd (made prior to experiments) and the measured ACd was obtained. Comparisons between predicted and measured velocity profiles also showed good agreement.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In