RESEARCH PAPERS: Gas Turbines: Control and Dynamics

Investigation of Wedge Probe Wall Proximity Effects: Part 1—Experimental Study

[+] Author and Article Information
P. D. Smout

Rolls-Royce plc., Derby, United Kingdom

P. C. Ivey

School of Mechanical Engineering, Cranfield University, Bedford, United Kingdom

J. Eng. Gas Turbines Power 119(3), 598-604 (Jul 01, 1997) (7 pages) doi:10.1115/1.2817026 History: Received February 01, 1996; Online November 19, 2007


Conventional three-hole wedge probes fail to measure the correct static pressure when operating in close proximity to a wall or boundary through which the probe is inserted. The free-stream pressure near the outer wall of a turbomachine may be overindicated by up to 20 percent dynamic head. This paper reports a series of experiments aimed at quantifying this so-called “wall proximity effect.” It is shown from a factorial experiment that probe wedge angle, stem design, and free-stream Mach number all have a significant influence. The yaw angle sensitivity of wedge probes is also found to depend on the proximity of the probe to the wall of introduction. Flow visualization studies on large-scale probe models are described, and a qualitative model of the probe local flow structures is developed. This model is used to explain the near-wall characteristics of the actual size wedge probes. In Part 2 of this paper, the experimental data are used to validate CFD calculations of the flow field around a wedge probe. A simple analytical model of the probe/flow interaction is developed from the CFD solutions.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In