Numerical Investigation of the Grinding Process in a Beater Wheel Mill With Classifier

[+] Author and Article Information
J. Anagnostopoulos, G. Bergeles

Department of Mechanical Engineering, Laboratory of Aerodynamics, National Technical University of Athens, 15700 Zografou—Athens, Greece

J. Eng. Gas Turbines Power 119(3), 723-733 (Jul 01, 1997) (11 pages) doi:10.1115/1.2817049 History: Received April 01, 1994; Revised March 01, 1997; Online November 19, 2007


A numerical investigation is presented for a two-dimensional simulation of the gas flow field and of the dynamic behavior of lignite particles inside Beater Wheel mills with classifier, installed in large coal-fired plants. A large number of representative particles are tracked using Lagrangian equations of motion, in combination with a stochastic model for particle turbulent dispersion. All the important mechanisms associated with the particle motion through the mill (particle-surface collisions and rebounding phenomena, fuel moisture evaporation and erosion wear of internal surfaces) are modeled. A special model is constructed to simulate the fragmentation of impacting particles and to calculate the size distribution of the final mill product. The models are regulated on the basis of available data from grinding mills of the Greek lignite power stations. The numerical code is capable of predicting the locations of significant erosion and to estimate the amount of particle mass that circulates through the mill via the classifying chamber. Mean impact velocity and impingement angle distributions along all the internal surfaces are also provided. The results indicate remarkable differences in the extent of the erosion caused at different locations of the mill. Also, the significant role of the leading blades arrangement inside the classifier on its classification performance and efficiency is elucidated.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In