The Reheat Gas Turbine With Steam-Blade Cooling—A Means of Increasing Reheat Pressure, Output, and Combined Cycle Efficiency

[+] Author and Article Information
I. G. Rice

Spring, Tex.

J. Eng. Power 104(1), 9-22 (Jan 01, 1982) (14 pages) doi:10.1115/1.3227272 History: Received December 05, 1980; Online September 28, 2009


The reheat (RH) pressure can be appreciably increased by applying steam cooling to the gas-generator (GG) turbine blading which in turn allows a higher RH firing temperature for a fixed exhaust temperature. These factors increase gas turbine output and raise combined-cycle efficiency. The GG turbine blading will approach “uncooled expansion efficiency”. Eliminating cooling air increases the gas turbine RH pressure by 10.6 percent. When steam is used (injected) as the blade coolant, additional GG work is also developed which further increases the RH pressure by another 12.0 percent to yield a total increase of approximately 22.6 percent. The 38-cycle pressure ratio 2400° F (1316° C) TIT GG studied produces a respectable 6.5 power turbine expansion ratio. The higher pressure also noticeably reduces the physical size of the RH combustor. This paper presents an analysis of the RH pressure rise when applying steam to blade cooling.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In