0
RESEARCH PAPERS

Rotor-Tip Leakage: Part II—Design Optimization Through Viscous Analysis and Experiment

[+] Author and Article Information
A. R. Wadia, T. C. Booth

Garrett Turbine Engine Co., Phoenix, Ariz., 80501

J. Eng. Power 104(1), 162-169 (Jan 01, 1982) (8 pages) doi:10.1115/1.3227245 History: Received December 11, 1980; Online September 28, 2009

Abstract

Blade tip losses represent a major efficiency penalty in a turbine rotor. These losses are presently controlled by maintaining close tolerances on tip clearances. This two-part paper outlines a new methodology for predicting and minimizing tip flows, and focuses on the control of tip leakage through minimization of the discharge coefficient to control the normal leakage flow component. Minimization of the discharge coefficient was achieved through viscous analysis and was supported by discharge-rig testing. The analysis for the discharge cross-flow used a stream function-vorticity formulation. Support testing was conducted with a newly developed water table discharge rig in which tip-coolant discharge could also be simulated. Experimental and numerical tip-leakage results are presented on a discharge coefficient parameter for five different tip configurations. In addition, numerical studies were conducted for stationary and rotating blades with and without tip coolant injection.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In