RESEARCH PAPERS: Gas Turbines: Combustion and Fuels

Reduction of NOx Formation by Water Sprays in Strained Two-Stage Flames

[+] Author and Article Information
S. C. Li, N. Ilincic, F. A. Williams

Center for Energy and Combustion Research, Department of Applied Mechanics and Engineering Sciences, University of California, San Diego, La Jolla, CA 92093-0411

J. Eng. Gas Turbines Power 119(4), 836-843 (Oct 01, 1997) (8 pages) doi:10.1115/1.2817062 History: Received February 01, 1996; Online November 19, 2007


Staged combustion can be employed to reduce the formation of CO and NOx , stabilize the flame, decrease the flame temperature, and create better working conditions in gas turbine combustors. To help understand influences of partial premixing and addition of water on NOx formation, we study two-stage flames in a counterflow spray burner. This paper reports experimental and theoretical results concerning two-stage combustion in which one feed stream is composed of a fuel-rich mixture of methane and air and the other is air. Water sprays are added to the air stream. This two-phase laminar counterflow configuration exhibits a green premixed flame, a blue diffusion flame, and a vaporization plane. All three are flat and parallel. The separation distances between them decrease with increasing equivalence ratio and strain rate. Flow visualization is provided through illumination by an argon ion laser sheet, velocity fields and spray structure are measured by a phase-doppler particle analyzer, concentration fields of major stable species are measured by gas chromatography of samples withdrawn from the flame, and temperature fields are measured by a thermocouple. Numerical integrations that employ a recent chemical-kinetic data base are performed to model the flame structure and NOx formation. Comparisons of experimental results with numerical predictions are made to test agreement. This work provides information on hydrocarbon combustion in both premixed flames and diffusion flames, indicates how NOx is formed in fuel-rich flames, and suggests how the pollutants can be reduced.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In